Basic Concepts

Charge and Current

\[\newcommand{\evalAt}[3]{\left. #1 \right\rvert_{#2}^{#3}} \newcommand{\kilo}{\mathrm{k}} \newcommand{\milli}{\mathrm{m}} \newcommand{\micro}{\mu} \newcommand{\nano}{\mathrm{n}} \newcommand{\pico}{\mathrm{p}} \newcommand{\ampere}{\mathrm{A}} \newcommand{\coulomb}{\mathrm{C}} \newcommand{\second}{\mathrm{s}}\]

Exercise 1.1

There are \(\frac{1}{1.602 \times 10^{-19}} = 6.24 \times 10^{18}\) electrons per \(1 \coulomb\) of charge.

(a)

\[\left( 6.482 \times 10^{17} \right) \left( -1.602 \times 10^{-19} \right) = -103.84 \milli\coulomb\]

(b)

\[\left( 1.24 \times 10^{18} \right) \left( -1.602 \times 10^{-19} \right) = -198.65 \milli\coulomb\]

(c)

\[\left( 2.46 \times 10^{19} \right) \left( -1.602 \times 10^{-19} \right) = -3.941 \coulomb\]

(d)

\[\left( 1.628 \times 10^{20} \right) \left( -1.602 \times 10^{-19} \right) = -26.08 \coulomb\]

Exercise 1.2

(a)

\[i = \frac{dq}{dt} = \frac{d}{dt} \left( 3t + 8 \right) = 3 \milli\ampere\]

(b)

\[i = \frac{dq}{dt} = \frac{d}{dt} \left( 8t^2 + 4t - 2 \right) = \left( 16t + 4 \right) \ampere\]

(c)

\[i = \frac{dq}{dt} = \frac{d}{dt} \left( 3e^{-t} - 5e^{-2t} \right) = \left( -3e^{-t} + 10e^{-2t} \right) \nano\ampere\]

(d)

\[i = \frac{dq}{dt} = \frac{d}{dt} \left( 10 \sin 120 \pi t \right) = \left( 1200 \pi \cos 120 \pi t \right) \pico\ampere\]

(e)

\[\begin{split}i = \frac{dq}{dt} = \frac{d}{dt} \left( 20 e^{-4t} \cos 50t \right) &= -80 e^{-4t} \cos 50t - 1000 e^{-4t} \sin 50t\\ &= -40 e^{-4t} \left( 2 \cos 50t +50 \sin 50t \right) \micro\ampere\end{split}\]

Exercise 1.3

(a)

Given \(i(t) = 3 \ampere\) and \(q(0) = 1 \coulomb\),

\[q(t) = \int i dt = 3t + C\]

where

\[\begin{split}q(0) &= 3(0) + C\\ 1 &= C.\end{split}\]

(b)

Given \(i(t) = (2t + 5) \milli\ampere\) and \(q(0) = 0\),

\[q(t) = \int (2t + 5) dt = t^2 + 5t + C\]

where

\[\begin{split}q(0) &= (0)^2 + 5(0) + C\\ 0 &= C.\end{split}\]

(c)

Given \(i(t) = 20 \cos\left( 10t + \pi / 6 \right) \micro\ampere\) and \(q(0) = 2 \micro\coulomb\),

\[q(t) = \int i dt = 2 \sin\left( 10t + \pi / 6 \right) + C\]

where

\[\begin{split}q(0) &= 2 \sin\left( 10(0) + \pi / 6 \right) + C\\ 2 &= 2 \sin \frac{\pi}{6} + C\\ 1 &= C.\end{split}\]

(d)

Given \(i(t) = 10e^{-30t} \sin\left( 40t \right) \ampere\) and \(q(0) = 0\),

\[q(t) = \int i dt = -\frac{1}{25} e^{-30t} \left( 3 \sin 40t + 4 \cos 40t \right) + C\]

where

\[\begin{split}q(0) &= -\frac{1}{25} e^{-30(0)} \left( 3 \sin 40 (0) + 4 \cos 40 (0) \right) + C\\ 0 &= -\frac{1}{25} 4 + C\\ \frac{4}{25} &= C.\end{split}\]

Exercise 1.4

Suppose a current of \(7.4 \ampere\) flows through a conductor. The amount of charge passing through any cross-section of the conductor in \(20 \second\) is

\[Q = \int_{t_0}^t i dt = \evalAt{it}{0}{20} = 148 \coulomb.\]

Exercise 1.5

The total charge transferred over the time interval of \(0 \leq t \leq 10 \second\) when \(i(t) = \frac{1}{2} t \ampere\) is

\[Q = \int_{t_0}^t i dt = \left. \frac{t^2}{4} \right\rvert_0^{10} = 25 \coulomb.\]

Exercise 1.6

The charge (\(\milli\coulomb\)) entering a certain element is defined as

\[\begin{split}q(t) = \begin{cases} 15t & \text{if } 0 \leq t \leq 2\\ 30 & \text{if } 2 \leq t \leq 8\\ 30 - 7.5 (t - 8) & \text{if } 8 \leq t \leq 12\\ 0 & \text{otherwise.} \end{cases}\end{split}\]

(a)

At \(t = 1 \milli\second\), the current is

\[i(t) = \frac{dq}{dt} = 15 \ampere.\]

(b)

At \(t = 6 \milli\second\), the current is

\[i(t) = \frac{dq}{dt} = 0 \ampere.\]

(b)

At \(t = 10 \milli\second\), the current is

\[i(t) = \frac{dq}{dt} = -7.5 \ampere.\]

Exercise 1.7

The charge (\(\coulomb\)) flowing in a wire is defined as

\[\begin{split}q(t) = \begin{cases} 25t & \text{if } 0 \leq t \leq 2\\ 50 - 25 (t - 2) & \text{if } 2 \leq t \leq 4\\ -25 (t - 4) & \text{if } 4 \leq t \leq 6\\ -50 + 25 (t - 6) & \text{if } 6 \leq t \leq 8\\ 0 & \text{otherwise.} \end{cases}\end{split}\]

The corresponding current (\(\ampere\)) is

\[\begin{split}i(t) = \frac{dq}{dt} = \begin{cases} 25 & \text{if } 0 \leq t \leq 2\\ -25 & \text{if } 2 \leq t \leq 6\\ 25 & \text{if } 6 \leq t \leq 8\\ 0 & \text{otherwise.} \end{cases}\end{split}\]

Exercise 1.8

The current (\(\milli\ampere\)) flowing past a point in a device is characterized as

\[\begin{split}i(t) = \begin{cases} 10t & \text{if } 0 \leq t \leq 1 \milli\second\\ 10 & \text{if } 1 \leq t \leq 2 \milli\second\\ 0 & \text{otherwise.} \end{cases}\end{split}\]

The total charge through the point is

\[Q(t) = \int_{t_0 = 0}^{t = 2} i dt = \int_0^1 10t dt + \int_1^2 10 dt = \evalAt{5t^2}{0}{1} + \evalAt{10t}{1}{2} = 15 \micro\coulomb.\]

Exercise 1.9

The current (\(\ampere\)) through an element is characterized by

\[\begin{split}i(t) = \begin{cases} i_1 = 10 & \text{if } 0 \leq t \leq 1\\ i_2 = 10 - 5 (t - 1) & \text{if } 1 \leq t \leq 2\\ i_3 = 5 & \text{if } 2 \leq t \leq 4\\ i_4 = 5 - 5 (t - 4) & \text{if } 4 \leq t \leq 5\\ 0 & \text{otherwise.} \end{cases}\end{split}\]

(a)

The total charge that passed through the element at \(t = 1 \second\) is

\[Q(t) = \int_{t_0 = 0}^{t = 1} i dt = \int_0^1 i_1 dt = \evalAt{10t}{0}{1} = 10 \coulomb.\]

(b)

The total charge that passed through the element at \(t = 3 \second\) is

\[Q(t) = \int_{t_0 = 0}^{t = 3} i dt = \int_0^1 i_1 dt + \int_1^2 i_2 dt + \int_2^3 i_3 dt = Q(1) + \evalAt{10t - \frac{5}{2} t^2 + 5t}{1}{2} + \evalAt{5t}{2}{3} = 22.5 \coulomb.\]

(c)

The total charge that passed through the element at \(t = 5 \second\) is

\[Q(t) = \int_{t_0 = 0}^{t = 5} i dt = \int_0^1 i_1 dt + \int_1^2 i_2 dt + \int_2^4 i_3 dt + \int_4^5 i_4 dt = Q(3) + \evalAt{5t}{3}{4} + \evalAt{5t - \frac{5}{2} t^2 + 20t}{4}{5} = 30 \coulomb.\]

Voltage, Power, and Energy

\[\newcommand{\joule}{\mathrm{J}} \newcommand{\volt}{\mathrm{V}} \newcommand{\watt}{\mathrm{W}} \newcommand{\hour}{\mathrm{h}}\]

Exercise 1.10

A lightning bolt with \(10 \kilo\ampere\) strikes an object for \(15 \micro\second\). The amount of charge deposited on the object is

\[Q = \int i dt = \left( 10 \times 10^3 \ampere \right) \left( 15 \times 10^{-6} \second \right) = 0.15 \coulomb.\]

Exercise 1.11

A rechargeable flashlight battery can deliver \(90 \milli\ampere\) for about \(12 \hour\). The amount of charge it can release at that rate is

\[Q = \int i dt = \evalAt{\left( 90 \times 10^{-3} \right) t}{0}{12 \times 3600} = 3.888 \kilo\coulomb.\]

If the terminal voltage is \(1.5 \volt\), the battery can delivery

\[\begin{split}w &= \int v dq & \quad \text{(1.3)}\\ &= \int v i dt & \quad \text{(1.1), (1.9)}\\ &= \evalAt{\left( 1.5 \times 0.09 \right) t}{0}{12 \times 3600}\\ &= 5.832 \kilo\joule\\ &= 1.62 \watt\hour.\end{split}\]

Exercise 1.12

The current (\(\ampere\)) through an element is given by

\[\begin{split}i(t) = \begin{cases} 3t & \text{if } 0 \leq t < 6\\ 18 & \text{if } 6 \leq t < 10\\ -12 & \text{if } 10 \leq t < 15\\ 0 & \text{if } t \geq 15. \end{cases}\end{split}\]

The charge (\(\coulomb\)) stored in the element over \(0 < t < 20 \second\) is given by

\[\begin{split}Q(t) = \begin{cases} \frac{3}{2} t^2 & \text{if } 0 \leq t < 6\\ 54 + 18 (t - 6) & \text{if } 6 \leq t < 10\\ 126 - 12 (t - 10) & \text{if } 10 \leq t < 15\\ 66 & \text{if } t \geq 15. \end{cases}\end{split}\]

Exercise 1.13

Given the charge (\(\milli\coulomb\)) entering the positive terminal of an element is

\[q = 5 \sin 4 \pi t,\]

the current (\(\milli\ampere\)) is

\[i = \frac{dq}{dt} = 20 \pi \cos 4 \pi t.\]

Suppose the voltage (\(\volt\)) across the element (passive sign convention) is

\[v = 3 \cos 4 \pi t.\]

(a)

The power delivered to the element at \(t = 0.3 \second\) is

\[\begin{split}p &= vi & \quad \text{(1.7)}\\ &= 60 \pi \cos^2 4 \pi t\\ &= 30 \pi \left( 1 + \cos 8 \pi t \right) & \quad \text{cosine identity} \cos 2 \alpha = 2 \cos^2 \alpha - 1\\ &= 123.37 \milli\watt.\end{split}\]

(b)

The energy delivered to the element between \(0\) and \(0.6 \second\) is

\[\begin{split}w &= \int_{t_0}^t p dt & \quad \text{(1.9)}\\ &= \evalAt{30 \pi t + \frac{15}{4} \sin 8 \pi t}{0}{0.6}\\ &= 58.76 \milli\joule.\end{split}\]

Exercise 1.14

The voltage (\(\volt\)) across a device and the current (\(\milli\ampere\)) through it are

\[v(t) = 10 \cos 2 t \quad \text{and} \quad i(t) = 20 \left( 1 - \exp -\frac{t}{2} \right).\]

(a)

The total charge in the device at \(t = 1 \second\) is

\[\begin{split}Q &= \int_{t_0 = 0}^t i dt & \quad \text{(1.2)}\\ &= \evalAt{20t + 40 \exp -\frac{t}{2}}{0}{1}\\ &= 4.26 \milli\coulomb.\end{split}\]

(b)

The power consumed by the device at \(t = 1 \second\) is

\[\begin{split}p &= vi & \quad \text{(1.7)}\\ &= 200 \left( 1 - \exp -\frac{t}{2} \right) \cos 2t\\ &= -32.75 \milli\watt.\end{split}\]

Exercise 1.15

The current (\(\milli\ampere\)) entering the positive terminal of a device is \(i(t) = 6 e^{-2t}\) and the voltage (\(\milli\volt\)) across the device is

\[v(t) = 10 \frac{di}{dt} = -120 \exp -2t.\]

(a)

The total charge delivered to the device between \(t = 0\) and \(t = 2 \second\) is

\[\begin{split}Q &= \int_{t_0 = 0}^t i dt & \quad \text{(1.2)}\\ &= \evalAt{-3 \exp -2t}{0}{2}\\ &= 2.95 \milli\coulomb.\end{split}\]

(b)

The power (\(\micro\watt\)) absorbed is

\[\begin{split}p &= vi & \quad \text{(1.7)}\\ &= -720 \exp -4t.\end{split}\]

(c)

The energy absorbed in \(3 \second\) is

\[\begin{split}w &= \int_{t_0 = 0}^t p dt & \quad \text{(1.9)}\\ &= \evalAt{180 \exp -4t}{0}{3}\\ &= -180 \micro\joule.\end{split}\]

Circuit Elements

Exercise 1.16

The current (\(\milli\ampere\)) through and the voltage (\(\volt\)) across an element are given by

\[\begin{split}i(t) = \begin{cases} 30t & \text{if } 0 \leq t < 2\\ 60 - 30 (t - 2) & \text{if } 2 \leq t < 4\\ 0 & \text{otherwise.} \end{cases} \qquad \text{and} \qquad v(t) = \begin{cases} 5 & \text{if } 0 \leq t < 2\\ -5 & \text{if } 2 \leq t < 4\\ 0 & \text{otherwise.} \end{cases}\end{split}\]

(a)

The power (\(\milli\watt\)) delivered to the element for \(t > 0\) is given by

\[\begin{split}p(t) = \begin{cases} 150t & \text{if } 0 \leq t < 2\\ -300 + 150 (t - 2) & \text{if } 2 \leq t < 4\\ 0 & \text{otherwise.} \end{cases}\end{split}\]

(b)

The total energy absorbed by the element for the period of \(0 < t < 4 \second\) is

\[\begin{split}w &= \int_{t_0 = 0}^t p dt & \quad \text{(1.9)}\\ &= \int_0^2 p dt + \int_2^4 p dt\\ &= \evalAt{75t^2}{0}{2} + \evalAt{-600t + 75t^2}{2}{4}\\ &= 0 \milli\joule.\end{split}\]

Exercise 1.17

The amount of power absorbed by element 3 is

\[\begin{split}p_1 + p_2 + p_3 + p_4 + p_5 &= 0 & \quad \text{(1.8)}\\ p_3 &= 205 - 60 - 45 - 30\\ &= 70 \watt.\end{split}\]

Exercise 1.18

Given \(I = 10 \ampere\),

\[\begin{split}p_1 &= -\left( 30 \times 10 \right) = -300 \watt\\ \\ p_2 &= I \times 10 = 100 \watt\\ \\ p_3 &= 20 \times 14 = 280 \watt\\ \\ p_4 &= -\left( 8 \times 4 \right) = -32 \watt\\ \\ p_5 &= -\left( 12 \times 0.4I \right) = -48 \watt.\end{split}\]

Exercise 1.19

The power (\(\watt\)) absorbed by each element is given by

\[\begin{split}p_1 &= - \left( 9 \times 8 \right) = -72\\ \\ p_2 &= 9 \times 2 = 18\\ \\ p_3 &= 3I\\ \\ p_4 &= 6I\end{split}\]

where

\[\begin{split}0 &= \sum_i p_i & \quad \text{(1.8)}\\ &= -54 + 9I\\ I &= 6 \ampere.\end{split}\]

Exercise 1.20

Given \(I_o = 2 \ampere\), the power (\(\watt\)) absorbed by each element is given by

\[\begin{split}p_1 &= - \left( 30 \times 6 \right) = -180\\ \\ p_2 &= 12 \times 6 = 72\\ \\ p_3 &= 3 V_o\\ \\ p_4 &= 28 \times I_o = 56\\ p_5 &= 28 \times 1 = 28\\ p_6 &= -\left( 5 I_o \times 3 \right) = -30\\\end{split}\]

where

\[\begin{split}0 &= \sum_i p_i & \quad \text{(1.8)}\\ &= -54 + 3 V_o\\ V_o &= 18 \volt.\end{split}\]

Applications

\[\newcommand{\minute}{\mathrm{min}} \newcommand{\per}{\mathrm{/}} \newcommand{\cent}{\mathrm{cents}} \newcommand{\day}{\mathrm{day}} \newcommand{\watthour}{\mathrm{Wh}} \newcommand{\amperehour}{\mathrm{Ah}} \newcommand{\mega}{\mathrm{M}}\]

Exercise 1.21

A \(60 \watt\) incandescent bulb operates at \(120 \volt\). The amount of coulombs flowing through the bulb in one day is

\[\begin{split}Q &= \int \frac{p}{v} dt & \quad \text{(1.6)}\\ &= \frac{60}{120} \times 3600\\ &= 43.2 \kilo\coulomb,\end{split}\]

which is equivalent to saying the number of electrons is

\[N_e = Q \left( 6.24 \times 10^{18} \right) = 2.696 \times 10^{23}.\]

Exercise 1.22

A lightning bolt strikes an airplane with \(40 \kilo\ampere\) for \(1.2 \milli\second\). The charge deposited on the plane is

\[\begin{split}Q &= \int_{t_0 = 0}^t i dt & \quad \text{(1.2)}\\ &= \evalAt{40000t}{0}{0.0012}\\ &= 48 \coulomb.\end{split}\]

Exercise 1.23

A \(1.8 \kilo\watt\) electric heater takes \(15 \minute\) to boil a quantity of water i.e.

\[\begin{split}w &= \int_{t_0 = 0}^{t} p dt & \quad \text{(1.9)}\\ &= \evalAt{1800t}{0}{15 \times 60}\\ &= 1620000 \joule\\ &= 450 \watthour & \quad 1 \watthour = 3600 \joule\\ &= 0.45 \kilo\watthour.\end{split}\]

Suppose this is done once a day and power costs \(10 \cent\per\kilo\watthour\). The cost of its operation for \(30\) days is

\[c = 30 \times 10 \times w = 135 \cent.\]

Exercise 1.24

A utility company charges \(8.2 \cent\per\kilo\watthour\). Suppose a consumer operates a \(60 \watt\) light bulb continuously for one day i.e.

\[\begin{split}w &= \int_{t_0 = 0}^{t} p dt & \quad \text{(1.9)}\\ &= \evalAt{60t}{0}{24}\\ &= 1.44 \kilo\watthour.\end{split}\]

That consumer would pay

\[c = 8.2 \times w = 11.81 \cent.\]

Exercise 1.25

A \(1.5 \kilo\watt\) toaster takes roughly \(3.5\) minutes to heat four slices of bread i.e.

\[\begin{split}w &= \int_{t_0 = 0}^{t} p dt & \quad \text{(1.9)}\\ &= \evalAt{1500t}{0}{3.5 \times 60}\\ &= 315000 \joule\\ &= 0.0875 \kilo\watthour.\end{split}\]

Assuming energy costs \(8.2 \cent\per\kilo\watthour\), the cost of operating the toaster once per day for one month is

\[c = 8.2 \times 30 \times w = 21.53 \cent.\]

Exercise 1.26

A flashlight battery has a rating of \(0.8 \amperehour\) and a lifetime of \(10 \hour\).

(a)

The battery can deliver

\[i = \frac{0.8}{10} = 80 \milli\ampere.\]

(b)

If its terminal voltage is \(6 \volt\), the battery can give

\[\begin{split}p &= vi & \quad \text{(1.7)}\\ &= 6 \times 0.08\\ &= 0.48 \watt.\end{split}\]

(c)

The amount of energy stored in the battery is

\[\begin{split}w &= \int_{t_0 = 0}^{t = 10} p & \quad \text{(1.9)}\\ &= \evalAt{pt}{0}{10}\\ &= 4.8 \watthour.\end{split}\]

Exercise 1.27

A typical automotive battery requires a constant current of \(3 \ampere\) for 4 hours to become fully charged. Suppose the terminal voltage (\(\volt\)) is \(10 + \frac{t}{2}\) where \(t\) is in hours.

(a)

The amount of charge transported is

\[\begin{split}Q &= \int_{t_0}^t i dt & \quad \text{(1.2)}\\ &= \evalAt{3t}{0}{4 \times 3600}\\ &= 43.2 \kilo\coulomb.\end{split}\]

(b)

The terminal voltage reformulated in seconds is \(10 + \frac{0.5t}{3600}\). The energy expended is

\[\begin{split}w &= \int_{t_0}^t vi dt & \quad \text{(1.9)}\\ &= i \left( \evalAt{10t + \frac{0.25 t^2}{3600}}{0}{4 \times 3600} \right)\\ &= 475.2 \kilo\joule\\ &= 0.132 \kilo\watthour & \quad 1 \kilo\watthour = 3600 \kilo\joule.\end{split}\]

(c)

Assuming electricity costs \(9 \cent\per\kilo\watthour\), the charging cost is

\[c = 9 \times w = 1.188 \cent.\]

Exercise 1.28

A \(60 \watt\) incandescent lamp is connected to a \(120 \volt\) source.

(a)

The current through the lamp is

\[\begin{split}i &= \frac{p}{v} & \quad \text{(1.7)}\\ &= 0.5 \ampere.\end{split}\]

(b)

The energy consumed in a non-leap year is

\[\begin{split}w &= \int_{t_0}^t p dt & \quad \text{(1.9)}\\ &= \evalAt{pt}{0}{365 \times 24}\\ &= 525.6 \kilo\joule.\end{split}\]

If electricity costs \(9 \cent\per\kilo\watthour\), the cost of operating the light is

\[c = 9 \times w = \$47.304.\]

Exercise 1.29

An electric stove with four burners and an oven is used as follows:

  • Burner 1: 20 minutes.

  • Burner 2: 40 minutes.

  • Burner 3: 15 minutes.

  • Burner 4: 45 minutes.

  • Oven: 30 minutes.

Suppose each burner is rated at \(1.2 \kilo\watt\) and the oven at \(1.8 \kilo\watt\).

The total amount of energy expended by the burners is

\[\begin{split}w_b &= \int_{t_0}^t p_b dt & \quad \text{(1.9)}\\ &= \evalAt{p_b t}{0}{(20 + 40 + 15 + 45) \times 60}\\ &= 8640 \kilo\joule\\ &= 2.4 \kilo\watthour\end{split}\]

and the oven is

\[\begin{split}w_o &= \int_{t_0}^t p_o dt & \quad \text{(1.9)}\\ &= \evalAt{p_o t}{0}{30 \times 60}\\ &= 3240 \kilo\joule\\ &= 0.9 \kilo\watthour.\end{split}\]

If electricity costs \(12 \cent\per\kilo\watthour\), the cost of electricity used in preparing the meal is

\[c = 12 \times (w_b + w_o) = 39.6 \cent.\]

Exercise 1.30

Reliant Energy charges customers as follows:

  • Monthly charge \(\$6\).

  • First \(250 \kilo\watthour @ 2 \cent\per\kilo\watthour\).

  • All additional \(\kilo\watthour @ 7 \cent\per\kilo\watthour\).

If a customer uses \(2.436 \mega\watthour\) in one month, Reliant Energy will charge

\[c = 6 + 0.02 \times 250 + 0.07 \times (2436 - 250) = \$164.02.\]

Exercise 1.31

Suppose a \(120 \watt\) PC runs for \(4 \hour\per\day\) while a \(60 \watt\) bulb runs for \(8 \hour\per\day\). The energy consumed by the PC is

\[\begin{split}w_{pc} &= \int_{t_0}^t p_{pc} dt & \quad \text{(1.9)}\\ &= \evalAt{p_{pc} t}{0}{4 \times 365}\\ &= 175200 \watthour\\ &= 175.2 \kilo\watthour\end{split}\]

and the bulb is

\[\begin{split}w_b &= \int_{t_0}^t p_b dt & \quad \text{(1.9)}\\ &= \evalAt{p_b t}{0}{8 \times 365}\\ &= 175200 \watthour\\ &= 175.2 \kilo\watthour.\end{split}\]

If electricity costs \(12 \cent\per\kilo\watthour\), this household pays per year

\[c = 12 \times (w_{pc} + w_b) = \$42.048 \cent.\]

Comprehensive Problems

\[\newcommand{\horsepower}{\mathrm{hp}}\]

Exercise 1.32

A telephone wire has a current of \(20 \micro\ampere\) flowing through it. The time it takes for a charge of \(15 \coulomb\) to pass through the wire is

\[\begin{split}Q &= \int_{t_0}^t i dt & \quad \text{(1.2)}\\ 15 &= \evalAt{it}{0}{t}\\ t &= \frac{15}{i}\\ &= 208.\bar{3} \hour.\end{split}\]

Exercise 1.33

A lightning bolt carried a current of \(2 \kilo\ampere\) and lasted for \(3 \milli\second\). The amount of charge contained in the lightning bolt is

\[\begin{split}Q &= \int_{t_0}^t i dt & \quad \text{(1.2)}\\ &= \evalAt{it}{0}{0.003}\\ &= 6 \coulomb.\end{split}\]

Exercise 1.34

The power (\(\watt\)) consumption of a certain household in one day is given by

\[\begin{split}p(t) = \begin{cases} 200 & \text{if } 0 \leq t < 6\\ 800 & \text{if } 6 \leq t < 8\\ 200 & \text{if } 8 \leq t < 18\\ 1200 & \text{if } 18 \leq t < 22\\ 200 & \text{if } 18 \leq t \leq 24. \end{cases}\end{split}\]

(a)

The total energy consumed is

\[\begin{split}w &= \int_{t_0 = 0}^t p dt & \quad \text{(1.9)}\\ &= \int_0^6 200 dt + \int_6^8 800 dt + \int_8^{18} 200 dt + \int_{18}^{22} 1200 dt + \int_{22}^{24} 200 dt\\ &= 200 (6 - 0) + 800 (8 - 6) + 200 (18 - 8) + 1200 (22 - 18) + 200 (24 - 22)\\ &= 10 \kilo\watthour.\end{split}\]

(b)

The average power per hour over the entire day is

\[p_{avg} = \frac{w}{24} = 416.\bar{6} \watt.\]

Exercise 1.35

The power (\(\mega\watt\)) drawn by an industrial plant between 8:00 and 8:30 A.M. is given by

\[\begin{split}p(t) = \begin{cases} 5 & \text{if } 0 \leq t < 5\\ 4 & \text{if } 5 \leq t < 10\\ 3 & \text{if } 10 \leq t < 15\\ 8 & \text{if } 15 \leq t < 20\\ 4 & \text{if } 20 \leq t \leq 30. \end{cases}\end{split}\]

The total energy consumed by the plant is

\[\begin{split}w &= \int_{t_0 = 0}^t p dt & \quad \text{(1.9)}\\ &= \int_0^5 5 dt + \int_5^{10} 4 dt + \int_{10}^{15} 3 dt + \int_{15}^{20} 8 dt + \int_{20}^{30} 4 dt\\ &= \frac{ 5 (5 - 0) + 4 (10 - 5) + 3 (15 - 10) + 8 (20 - 15) + 4 (30 - 20) }{60} & \quad \text{convert } \minute \text{ to } \hour\\ &= 2.\bar{3} \mega\watthour.\end{split}\]

Exercise 1.36

A lead-acid battery is rated at \(160 \amperehour\).

(a)

The maximum current it can supply for \(40 \hour\) is

\[\begin{split}i &= \frac{\Delta q}{\Delta t} & \quad \text{(1.1)}\\ &= \frac{160}{40}\\ &= 4 \ampere.\end{split}\]

(a)

If it is discharged at \(1 \milli\ampere\), the battery can last

\[\begin{split}\Delta t &= \frac{\Delta q}{i} & \quad \text{(1.1)}\\ &= \frac{160 \times 3600}{0.001}\\ &= 6666.\bar{6} \day.\end{split}\]

Exercise 1.37

A \(12 \volt\) battery requires a total charge of \(40 \amperehour\) during recharging. The energy supplied to the battery is

\[\begin{split}v &= \frac{\Delta w}{\Delta q} & \quad \text{(1.3)}\\ \Delta w &= v \Delta q\\ &= 12 (40 \times 3600)\\ &= 1.728 \mega\joule.\end{split}\]

Exercise 1.38

Assuming \(1 \horsepower = 746 \watt\), a \(10 \horsepower\) motor delivers in 30 minutes

\[\begin{split}w &= \int_{t_0 = 0}^{t} p dt & \quad \text{(1.9)}\\ &= \evalAt{10 \times 746 t}{0}{30 / 60}\\ &= 12 (40 \times 3600)\\ &= 3.73 \kilo\watthour.\end{split}\]

Exercise 1.39

A \(600 \watt\) TV receiver is turned on for \(4 \hour\) with nobody watching it. The total energy expended is

\[\begin{split}w &= \int_{t_0 = 0}^{t} p dt & \quad \text{(1.9)}\\ &= \evalAt{600t}{0}{4}\\ &= 2.4 \kilo\watthour.\end{split}\]

If electricity costs \(10 \cent\per\kilo\watthour\), the consumer wastes

\[c = 10 \times 2.4 = 24 \cent.\]