The Simplex Method
The Simplex Method Tool and the Simplex Pivot Tool were useful in
the exercises.
Exercise 2.1
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 6 x_1 + 8 x_2 + 5 x_3 + 9 x_4\\
\text{subject to} \quad
w_1 &= 5 - 2 x_1 - x_2 - x_3 - 3 x_4\\
w_2 &= 3 - x_1 - 3 x_2 - x_3 - 2 x_4\\
x_i &\geq 0 \quad i = 1, 2, \ldots, 4\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Initial feasible solution:
\[x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
x_4 = 0, \quad
w_1 = 5, \quad
w_2 = 3.\]
Choose \(x_4\) as the entering variable and \(w_2\) as the leaving
variable, based on the pivot rules in the section after (2.6) and (2.7), where
\[x_4 = \min\left\{ w_1, w_2 \right\}_{\geq 0}
= \min\left\{ \frac{5}{3}, \frac{3}{2} \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
x_4 = \frac{3}{2}, \quad
w_1 = \frac{1}{2}, \quad
w_2 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 0.5 \left( 27 + 3 x_1 - 11 x_2 + x_3 - 9 w_2 \right)\\
\text{subject to} \quad
w_1 &= 0.5 \left( 1 - x_1 + 7 x_2 + x_3 + 3 w_2 \right)\\
x_4 &= 0.5 \left( 3 - x_1 - 3 x_2 - x_3 - w_2 \right)\\
x_i &\geq 0 \quad i = 1, 2, \ldots, 4\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Choose \(x_1\) and \(w_1\) as the entering and leaving variable
respectively where
\[x_1 = \min\left\{ w_1, x_4 \right\}_{\geq 0}
= \min\left\{ 1, 3 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 1, \quad
x_2 = 0, \quad
x_3 = 0, \quad
x_4 = 1, \quad
w_1 = 0, \quad
w_2 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 15 - 3 w_1 + 5 x_2 + 2 x_3\\
\text{subject to} \quad
x_1 &= 1 + 7 x_2 + x_3 - 2 w_1 + 3 w_2\\
x_4 &= 1 - 5 x_2 - x_3 + w_1 - 2 w_2\\
x_i &\geq 0 \quad i = 1, 2, \ldots, 4\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Choose \(x_2\) and \(x_4\) as the entering and leaving variable
respectively where
\[x_2 = \min\left\{ x_4 \right\}_{\geq 0} = \frac{1}{5}.\]
Update the current dictionary’s feasible solution to
\[x_1 = \frac{12}{5}, \quad
x_2 = \frac{1}{5}, \quad
x_3 = 0, \quad
x_4 = 0, \quad
w_1 = 0, \quad
w_2 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 16 + x_3 - x_4 - 2 w_1 - 2 w_2\\
\text{subject to} \quad
x_1 &= 0.2 \left( 12 - 2 x_3 - 7 x_4 - 3 w_1 + w_2 \right)\\
x_2 &= 0.2 \left( 1 - x_3 - x_4 + w_1 - 2 w_2 \right)\\
x_i &\geq 0 \quad i = 1, 2, \ldots, 4\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Choose \(x_3\) and \(x_2\) as the entering and leaving variable
respectively where
\[x_3 = \min\left\{ x_1, x_2 \right\}_{\geq 0}
= \min\left\{ 6, 1 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 2, \quad
x_2 = 0, \quad
x_3 = 1, \quad
x_4 = 0, \quad
w_1 = 0, \quad
w_2 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 17 - 5 x_2 - 2 x_4 - w_1 - 4 w_2\\
\text{subject to} \quad
x_1 &= 2 + 2 x_2 - x_4 - w_1 + w_2\\
x_3 &= 1 - 5 x_2 - x_4 + w_1 - 2 w_2\\
x_i &\geq 0 \quad i = 1, 2, \ldots, 4\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Exercise 2.2
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 2 x_1 + x_2\\
\text{subject to} \quad
w_1 &= 4 - 2 x_1 - x_2\\
w_2 &= 3 - 2 x_1 - 3 x_2\\
w_3 &= 5 - 4 x_1 - x_2\\
w_4 &= 1 - x_1 - 5 x_2\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2, \ldots, 4
\end{aligned}\end{split}\]
Initial feasible solution:
\[x_1 = 0, \quad
x_2 = 0, \quad
w_1 = 4, \quad
w_2 = 3, \quad
w_3 = 5, \quad
w_4 = 1.\]
Choose \(x_1\) and \(w_4\) as the entering and leaving variable
respectively where
\[x_1 = \min\left\{ w_1, w_2, w_3, w_4 \right\}_{\geq 0}
= \min\left\{ 2, \frac{3}{2}, \frac{5}{4}, 1 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 1, \quad
x_2 = 0, \quad
w_1 = 2, \quad
w_2 = 1, \quad
w_3 = 1, \quad
w_4 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 2 - 9 x_2 - 2 w_4\\
\text{subject to} \quad
x_1 &= 1 - 5 x_2 - w_4\\
w_1 &= 2 + 9 x_2 + 2 w_4\\
w_2 &= 1 + 7 x_2 + 2 w_4\\
w_3 &= 1 + 19 x_2 + 4 w_4\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2, \ldots, 4
\end{aligned}\end{split}\]
Exercise 2.3
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 2 x_1 - 6 x_2\\
\text{subject to} \quad
w_1 &= -2 + x_1 + x_2 + x_3\\
w_2 &= 1 - 2 x_1 + x_2 - x_3\\
x_i &\geq 0 \quad i = 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Initial infeasible solution:
\[x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
w_1 = -2, \quad
w_2 = 1.\]
The auxiliary problem is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
-x_0 &\\
\text{subject to} \quad
-x_1 - x_2 - x_3 - x_0 &\leq -2\\
2 x_1 - x_2 + x_3 - x_0 &\leq 1\\
x_i &\geq 0 \quad i = 0, 1, 2, 3
\end{aligned}\end{split}\]
and its initial infeasible dictionary is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -x_0\\
\text{subject to} \quad
w_1 &= -2 + x_1 + x_2 + x_3 + x_0\\
w_2 &= 1 - 2 x_1 + x_2 - x_3 + x_0\\
x_i &\geq 0 \quad i = 0, 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Initial infeasible solution for auxiliary problem:
\[x_0 = 0, \quad
x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
w_1 = -2, \quad
w_2 = 1.\]
Pivot the infeasible dictionary with \(x_0\) as the entering variable and
\(w_1\), the most infeasible variable, as the leaving variable. The
resulting dictionary is then
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -2 + x_1 + x_2 + x_3 - w_1\\
\text{subject to} \quad
x_0 &= 2 - x_1 - x_2 - x_3 + w_1\\
w_2 &= 3 - 3 x_1 - 2 x_3 + w_1\\
x_i &\geq 0 \quad i = 0, 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
and its feasible solution is updated to
\[x_0 = 2, \quad
x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
w_1 = 0, \quad
w_2 = 3.\]
Choose \(x_1\) and \(w_2\) as the entering and leaving variable
respectively where
\[x_1 = \min\left\{ x_0, w_2 \right\}_{\geq 0}
= \min\left\{ 2, 1 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_0 = 1, \quad
x_1 = 1, \quad
x_2 = 0, \quad
x_3 = 0, \quad
w_1 = 0, \quad
w_2 = 0.\]
Pivot auxiliary dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \frac{1}{3} \left( -3 + 3 x_2 + x_3 - 2 w_1 - w_2 \right)\\
\text{subject to} \quad
x_0 &= \frac{1}{3} \left( 3 - 3 x_2 - x_3 + 2 w_1 + w_2 \right)\\
x_1 &= \frac{1}{3} \left( 3 - 2 x_3 + w_1 + w_2 \right)\\
x_i &\geq 0 \quad i = 0, 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Choose \(x_2\) and \(x_0\) as the entering and leaving variable
respectively where
\[x_2 = \min\left\{ x_0 \right\}_{\geq 0}
= \min\left\{ 1 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_0 = 0, \quad
x_1 = 1, \quad
x_2 = 1, \quad
x_3 = 0, \quad
w_1 = 0, \quad
w_2 = 0.\]
Pivot auxiliary dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -x_0\\
\text{subject to} \quad
x_1 &= \frac{1}{3} \left( 3 - 2 x_3 + w_1 - w_2 \right)\\
x_2 &= \frac{1}{3} \left( 3 - 3 x_0 - x_3 + 2 w_1 + w_2 \right)\\
x_i &\geq 0 \quad i = 0, 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
The dictionary is optimal for the auxiliary problem, so \(x_0\) can be
dropped and the original objective function can be reintroduced with the basic
variables substituted appropriately:
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -4 + \frac{2}{3} x_3 - \frac{10}{3} w_1 - \frac{8}{3} w_2\\
\text{subject to} \quad
x_1 &= \frac{1}{3} \left( 3 - 2 x_3 + w_1 - w_2 \right)\\
x_2 &= \frac{1}{3} \left( 3 - x_3 + 2 w_1 + w_2 \right)\\
x_i &\geq 0 \quad i = 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Initial feasible solution:
\[x_1 = 1, \quad
x_2 = 1, \quad
x_3 = 0, \quad
w_1 = 0, \quad
w_2 = 0.\]
Choose \(x_3\) and \(x_1\) as the entering and leaving variable
respectively where
\[x_3 = \min\left\{ x_1, x_2 \geq 0 \right\}_{\geq 0}
= \min\left\{ \frac{3}{2}, 3 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 0, \quad
x_2 = \frac{1}{2}, \quad
x_3 = \frac{3}{2}, \quad
w_1 = 0, \quad
w_2 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -3 - x_1 - 3 w_1 - 3 w_2\\
\text{subject to} \quad
x_2 &= \frac{1}{2} \left( 1 + x_1 + w_1 + w_2 \right)\\
x_3 &= \frac{1}{2} \left( 3 - 3 x_1 + w_1 - w_2 \right)\\
x_i &\geq 0 \quad i = 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Exercise 2.4
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -x_1 - 3 x_2 - x_3\\
\text{subject to} \quad
w_1 &= -5 - 2 x_1 + 5 x_2 - x_3\\
w_2 &= 4 - 2 x_1 + x_2 - 2 x_3\\
x_i &\geq 0 \quad i = 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Initial infeasible solution:
\[x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
w_1 = -5, \quad
w_2 = 4.\]
The auxiliary problem is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
-x_0 &\\
\text{subject to} \quad
2 x_1 - 5 x_2 + x_3 - x_0 &\leq -5\\
2 x_1 - x_2 + 2 x_3 - x_0 &\leq 4\\
x_i &\geq 0 \quad i = 0, 1, 2, 3
\end{aligned}\end{split}\]
and its initial infeasible dictionary is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -x_0\\
\text{subject to} \quad
w_1 &= -5 - 2 x_1 + 5 x_2 + x_3 + x_0\\
w_2 &= 4 - 2 x_1 + x_2 + 2 x_3 + x_0\\
x_i &\geq 0 \quad i = 0, 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Initial infeasible solution for auxiliary problem:
\[x_0 = 0, \quad
x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
w_1 = -5, \quad
w_2 = 4.\]
Pivot the infeasible dictionary with \(x_0\) as the entering variable and
\(w_1\), the most infeasible variable, as the leaving variable. The
resulting dictionary is then
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -5 - 2 x_1 + 5 x_2 + x_3 - w_1\\
\text{subject to} \quad
x_0 &= 5 + 2 x_1 - 5 x_2 - x_3 + w_1\\
w_2 &= 9 - 4 x_2 + x_3 + w_1\\
x_i &\geq 0 \quad i = 0, 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
and its feasible solution is updated to
\[x_0 = 5, \quad
x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
w_1 = 0, \quad
w_2 = 9.\]
Choose \(x_2\) and \(x_0\) as the entering and leaving variable
respectively where
\[x_2 = \min\left\{ x_0, w_2 \right\}_{\geq 0}
= \min\left\{ 1, \frac{9}{4} \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_0 = 0, \quad
x_1 = 0, \quad
x_2 = 1, \quad
x_3 = 0, \quad
w_1 = 0, \quad
w_2 = 5.\]
Pivot auxiliary dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -x_0\\
\text{subject to} \quad
x_2 &= \frac{1}{5} \left( 5 + 2 x_1 - x_0 - x_3 + w_1 \right)\\
w_2 &= \frac{1}{5} \left( 25 - 8 x_1 + 4 x_0 + 9 x_3 + w_1 \right)\\
x_i &\geq 0 \quad i = 0, 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
The dictionary is optimal for the auxiliary problem, so \(x_0\) can be
dropped and the original objective function can be reintroduced with the basic
variables substituted appropriately:
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \frac{1}{5} \left( -15 - 8 x_1 - 2 x_3 - 3 w_1 \right)\\
\text{subject to} \quad
x_2 &= \frac{1}{5} \left( 5 + 2 x_1 - x_3 + w_1 \right)\\
w_2 &= \frac{1}{5} \left( 25 - 8 x_1 + 9 x_3 + w_1 \right)\\
x_i &\geq 0 \quad i = 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Initial feasible solution:
\[x_1 = 0, \quad
x_2 = 1, \quad
x_3 = 0, \quad
w_1 = 0, \quad
w_2 = 5,\]
which happens to be the optimal solution since all the coefficients in
\(\zeta\) are negative.
Exercise 2.5
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= x_1 + 3 x_2\\
\text{subject to} \quad
w_1 &= -3 + x_1 + x_2\\
w_2 &= -1 + x_1 - x_2\\
w_3 &= 4 - x_1 - 2 x_2\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Initial infeasible solution:
\[x_1 = 0, \quad
x_2 = 0, \quad
w_1 = -3, \quad
w_2 = -1, \quad
w_3 = 4.\]
The auxiliary problem is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
-x_0 &\\
\text{subject to} \quad
-x_1 - x_2 - x_0 &\leq -3\\
-x_1 + x_2 - x_0 &\leq -1\\
x_1 + 2 x_2 - x_0 &\leq 4\\
x_i &\geq 0 \quad i = 0, 1, 2
\end{aligned}\end{split}\]
and its initial infeasible dictionary is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -x_0\\
\text{subject to} \quad
w_1 &= -3 + x_0 + x_1 + x_2\\
w_2 &= -1 + x_0 + x_1 - x_2\\
w_3 &= 4 + x_0 - x_1 - 2 x_2\\
x_i &\geq 0 \quad i = 0, 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Initial infeasible solution for auxiliary problem:
\[x_0 = 0, \quad
x_1 = 0, \quad
x_2 = 0, \quad
w_1 = -3, \quad
w_2 = -1, \quad
w_3 = 4.\]
Pivot the infeasible dictionary with \(x_0\) as the entering variable and
\(w_1\), the most infeasible variable, as the leaving variable. The
resulting dictionary is then
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -3 + x_1 + x_2 - w_1\\
\text{subject to} \quad
x_0 &= 3 - x_1 - x_2 + w_1\\
w_2 &= 2 - 2 x_2 + w_1\\
w_3 &= 7 - 2 x_1 - 3 x_2 + w_1\\
x_i &\geq 0 \quad i = 0, 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
and its feasible solution is updated to
\[x_0 = 3, \quad
x_1 = 0, \quad
x_2 = 0, \quad
w_1 = 0, \quad
w_2 = 2, \quad
w_3 = 7.\]
Choose \(x_1\) and \(x_0\) as the entering and leaving variable
respectively where
\[x_1 = \min\left\{ x_0, w_3 \right\}_{\geq 0}
= \min\left\{ 3, \frac{7}{2} \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_0 = 0, \quad
x_1 = 3, \quad
x_2 = 0, \quad
w_1 = 0, \quad
w_2 = 2, \quad
w_3 = 1.\]
Pivot auxiliary dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -x_0\\
\text{subject to} \quad
x_1 &= 3 - x_0 - x_2 + w_1\\
w_2 &= 2 - 2 x_2 + w_1\\
w_3 &= 1 + 2 x_0 - x_2 - w_1\\
x_i &\geq 0 \quad i = 0, 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
The dictionary is optimal for the auxiliary problem, so \(x_0\) can
be dropped and the original objective function can be reintroduced with
the basic variables substituted appropriately:
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 3 + 2 x_2 + w_1\\
\text{subject to} \quad
x_1 &= 3 - x_2 + w_1\\
w_2 &= 2 - 2 x_2 + w_1\\
w_3 &= 1 - x_2 - w_1\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Initial feasible solution:
\[x_1 = 3, \quad
x_2 = 0, \quad
w_1 = 0, \quad
w_2 = 2, \quad
w_3 = 1.\]
Unbounded Solution
Choose \(x_2\) and \(w_2\) as the entering and leaving variable
respectively where
\[x_2 = \min\left\{ x_1, w_2, w_3 \right\}_{\geq 0}
= \min\left\{ 3, 1, 1 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 2, \quad
x_2 = 1, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 5 + 2 w_1 - w_2\\
\text{subject to} \quad
x_1 &= \frac{1}{2} \left( 4 + w_1 + w_2 \right)\\
x_2 &= \frac{1}{2} \left( 2 + w_1 - w_2 \right)\\
w_3 &= \frac{1}{2} \left( -3 w_1 + w_2 \right)\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Since the entering variable
\[w_1 = \min\left\{ x_1, x_2, w_3 \right\}_{\geq 0}
= \min\left\{ -4, -2, 0 \right\},\]
the problem is unbounded.
Bounded Solution
Choose \(x_2\) and \(w_3\) as the entering and leaving variable
respectively where
\[x_2 = \min\left\{ x_1, w_2, w_3 \right\}_{\geq 0}
= \min\left\{ 3, 1, 1 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 2, \quad
x_2 = 1, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 5 - w_1 - 2 w_3\\
\text{subject to} \quad
x_1 &= 2 + 2 w_1 + w_3\\
x_2 &= 1 - w_1 - w_3\\
w_2 &= 3 w_1 + 2 w_3\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Exercise 2.6
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= x_1 + 3 x_2\\
\text{subject to} \quad
w_1 &= -3 + x_1 + x_2\\
w_2 &= -1 + x_1 - x_2\\
w_3 &= 2 - x_1 - 2 x_2\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Initial infeasible solution:
\[x_1 = 0, \quad
x_2 = 0, \quad
w_1 = -3, \quad
w_2 = -1, \quad
w_3 = 2.\]
The auxiliary problem is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
-x_0 &\\
\text{subject to} \quad
-x_1 - x_2 - x_0 &\leq -3\\
-x_1 + x_2 - x_0 &\leq -1\\
x_1 + 2 x_2 - x_0 &\leq 2\\
x_i &\geq 0 \quad i = 0, 1, 2
\end{aligned}\end{split}\]
and its initial infeasible dictionary is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -x_0\\
\text{subject to} \quad
w_1 &= -3 + x_0 + x_1 + x_2\\
w_2 &= -1 + x_0 + x_1 - x_2\\
w_3 &= 2 + x_0 - x_1 - 2 x_2\\
x_i &\geq 0 \quad i = 0, 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Initial infeasible solution for auxiliary problem:
\[x_0 = 0, \quad
x_1 = 0, \quad
x_2 = 0, \quad
w_1 = -3, \quad
w_2 = -1, \quad
w_3 = 2.\]
Pivot the infeasible dictionary with \(x_0\) as the entering variable and
\(w_1\), the most infeasible variable, as the leaving variable. The
resulting dictionary is then
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -3 + x_1 + x_2 - w_1\\
\text{subject to} \quad
x_0 &= 3 - x_1 - x_2 + w_1\\
w_2 &= 2 - 2 x_2 + w_1\\
w_3 &= 5 - 2 x_1 - 3 x_2 + w_1\\
x_i &\geq 0 \quad i = 0, 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
and its feasible solution is updated to
\[x_0 = 3, \quad
x_1 = 0, \quad
x_2 = 0, \quad
w_1 = 0, \quad
w_2 = 2, \quad
w_3 = 5.\]
Notice that either \(x_1\) or \(x_2\) can be selected. As shown
below, both routes will lead to a negative optimal solution. Thus, the
original problem is infeasible.
Route 1
Choose \(x_2\) and \(w_2\) as the entering and leaving variable
respectively where
\[x_1 = \min\left\{ x_0, w_2, w_3 \right\}_{\geq 0}
= \min\left\{ 3, 1, \frac{5}{3} \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_0 = 2, \quad
x_1 = 0, \quad
x_2 = 1, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = 2.\]
Pivot auxiliary dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \frac{1}{2} \left( -4 + 2 x_1 - w_1 - w_2 \right)\\
\text{subject to} \quad
x_0 &= \frac{1}{2} \left( 4 - 2 x_1 + w_1 + w_2 \right)\\
x_2 &= \frac{1}{2} \left( 2 + w_1 + w_2 \right)\\
w_3 &= \frac{1}{2} \left( 6 - 4 x_1 + 2 w_2 \right)\\
x_i &\geq 0 \quad i = 0, 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Choose \(x_1\) and \(w_3\) as the entering and leaving variable
respectively where
\[x_1 = \min\left\{ x_0, w_3 \right\}_{\geq 0}
= \min\left\{ 2, \frac{3}{2} \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_0 = \frac{1}{2}, \quad
x_1 = \frac{3}{2}, \quad
x_2 = 1, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = 0.\]
Pivot auxiliary dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \frac{1}{2} \left( -1 - w_1 - w_3 \right)\\
\text{subject to} \quad
x_0 &= \frac{1}{2} \left( 1 + w_1 + w_3 \right)\\
x_1 &= \frac{1}{2} \left( 3 + w_2 - w_3 \right)\\
x_2 &= \frac{1}{2} \left( 2 + w_1 - w_2 \right)\\
x_i &\geq 0 \quad i = 0, 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Route 2
Choose \(x_1\) and \(w_3\) as the entering and leaving variable
respectively where
\[x_1 = \min\left\{ x_0, w_3 \right\}_{\geq 0}
= \min\left\{ 3, \frac{5}{2} \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_0 = \frac{1}{2}, \quad
x_1 = \frac{5}{2}, \quad
x_2 = 0, \quad
w_1 = 0, \quad
w_2 = 2, \quad
w_3 = 0.\]
Pivot auxiliary dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \frac{1}{2} \left( -1 - w_1 - w_3 \right)\\
\text{subject to} \quad
x_0 &= \frac{1}{2} \left( 1 + w_1 + w_3 \right)\\
x_1 &= \frac{1}{2} \left( 5 - 2 x_2 + w_1 - w_3 \right)\\
w_2 &= \frac{1}{2} \left( 4 - 4 x_2 + 2 w_1 \right)\\
x_i &\geq 0 \quad i = 0, 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Exercise 2.7
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= x_1 + 3 x_2\\
\text{subject to} \quad
w_1 &= -3 + x_1 + x_2\\
w_2 &= -1 + x_1 - x_2\\
w_3 &= 2 + x_1 - 2 x_2\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Initial infeasible solution:
\[x_1 = 0, \quad
x_2 = 0, \quad
w_1 = -3, \quad
w_2 = -1, \quad
w_3 = 2.\]
The auxiliary problem is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
-x_0 &\\
\text{subject to} \quad
-x_1 - x_2 - x_0 &\leq -3\\
-x_1 + x_2 - x_0 &\leq -1\\
-x_1 + 2 x_2 - x_0 &\leq 2\\
x_i &\geq 0 \quad i = 0, 1, 2
\end{aligned}\end{split}\]
and its initial infeasible dictionary is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -x_0\\
\text{subject to} \quad
w_1 &= -3 + x_0 + x_1 + x_2\\
w_2 &= -1 + x_0 + x_1 - x_2\\
w_3 &= 2 + x_0 + x_1 - 2 x_2\\
x_i &\geq 0 \quad i = 0, 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Initial infeasible solution for auxiliary problem:
\[x_0 = 0, \quad
x_1 = 0, \quad
x_2 = 0, \quad
w_1 = -3, \quad
w_2 = -1, \quad
w_3 = 2.\]
Pivot the infeasible dictionary with \(x_0\) as the entering variable and
\(w_1\), the most infeasible variable, as the leaving variable. The
resulting dictionary is then
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -3 + x_1 + x_2 - w_1\\
\text{subject to} \quad
x_0 &= 3 - x_1 - x_2 + w_1\\
w_2 &= 2 - 2 x_2 + w_1\\
w_3 &= 5 - x_2 + w_1\\
x_i &\geq 0 \quad i = 0, 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
and its feasible solution is updated to
\[x_0 = 3, \quad
x_1 = 0, \quad
x_2 = 0, \quad
w_1 = 0, \quad
w_2 = 2, \quad
w_3 = 5.\]
Choose \(x_1\) and \(x_0\) as the entering and leaving variable
respectively where
\[x_1 = \min\left\{ x_0 \right\}_{\geq 0}
= \min\left\{ 3 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_0 = 0, \quad
x_1 = 3, \quad
x_2 = 0, \quad
w_1 = 0, \quad
w_2 = 2, \quad
w_3 = 5.\]
Pivot auxiliary dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -x_0\\
\text{subject to} \quad
x_1 &= 3 - x_0 - x_2 + w_1\\
w_2 &= 2 - 2 x_2 + w_1\\
w_3 &= 5 - x_2 + w_1\\
x_i &\geq 0 \quad i = 0, 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
The dictionary is optimal for the auxiliary problem, so \(x_0\) can be
dropped and the original objective function can be reintroduced with the
basic variables substituted appropriately:
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 3 + 2 x_2 + w_1\\
\text{subject to} \quad
x_1 &= 3 - x_2 + w_1\\
w_2 &= 2 - 2 x_2 + w_1\\
w_3 &= 1 - x_2 + w_1\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Initial feasible solution:
\[x_1 = 3, \quad
x_2 = 0, \quad
w_1 = 0, \quad
w_2 = 2, \quad
w_3 = 1.\]
Notice that as long as \(w_1 \geq 2 x_2\), the constraints are satisfied.
As shown below, the original problem is feasible but has an unbounded objective.
Route 1
Choose \(x_2\) and \(w_2\) as the entering and leaving variable
respectively where
\[x_2 = \min\left\{ x_1, w_2, w_3 \right\}_{\geq 0}
= \min\left\{ 3, 1, 1 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 2, \quad
x_2 = 1, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 5 + 2 w_1 - w_2\\
\text{subject to} \quad
x_1 &= \frac{1}{2} \left( 4 + w_1 + w_2 \right)\\
x_2 &= \frac{1}{2} \left( 2 + w_1 - w_2 \right)\\
w_3 &= \frac{1}{2} \left( w_1 + w_2 \right)\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Since the entering variable
\[w_1 = \min\left\{ x_1, x_2, w_3 \right\}_{\geq 0}
= \min\left\{ -4, -2, 0 \right\},\]
the problem is unbounded.
Route 2
Choose \(x_2\) and \(w_3\) as the entering and leaving variable
respectively where
\[x_2 = \min\left\{ x_1, w_2, w_3 \right\}_{\geq 0}
= \min\left\{ 3, 1, 1 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 2, \quad
x_2 = 1, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 5 + 3 w_1 - 2 w_3\\
\text{subject to} \quad
x_1 &= 2 + w_3\\
x_2 &= 1 + w_1 - w_3\\
w_2 &= -w_1 + 2 w_3\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Since the entering variable
\[w_1 = \min\left\{ x_2, w_2 \right\}_{\geq 0}
= \min\left\{ -1, 0 \right\}_{\geq 0},\]
the problem is unbounded.
Exercise 2.8
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 3 x_1 + 2 x_2\\
\text{subject to} \quad
w_1 &= 1 - x_1 + 2 x_2\\
w_2 &= 2 - x_1 + x_2\\
w_3 &= 6 - 2 x_1 + x_2\\
w_4 &= 5 - x_1\\
w_5 &= 16 - 2 x_1 - x_2\\
w_6 &= 12 - x_1 - x_2\\
w_7 &= 21 - x_1 - 2 x_2\\
w_8 &= 10 - x_2\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, \ldots, 8
\end{aligned}\end{split}\]
Initial feasible solution:
\[x_1 = 0, \quad
x_2 = 0, \quad
w_1 = 1, \quad
w_2 = 2, \quad
w_3 = 6, \quad
w_4 = 5, \quad
w_5 = 16, \quad
w_6 = 12, \quad
w_7 = 21, \quad
w_8 = 10.\]
Choose \(x_1\) and \(w_1\) as the entering and leaving variable
respectively where
\[x_1 = \min\left\{ w_i \geq 0 \right\}_{i = 1}^7
= \min\left\{ 1, 2, 3, 5, 8, 12, 21 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 1, \quad
x_2 = 0, \quad
w_1 = 0, \quad
w_2 = 1, \quad
w_3 = 4, \quad
w_4 = 4, \quad
w_5 = 14, \quad
w_6 = 11, \quad
w_7 = 20, \quad
w_8 = 10.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 3 - 3 w_1 + 8 x_2\\
\text{subject to} \quad
x_1 &= 1 - w_1 + 2 x_2\\
w_2 &= 1 + w_1 - x_2\\
w_3 &= 4 + 2 w_1 - 3 x_2\\
w_4 &= 4 + w_1 - 2 x_2\\
w_5 &= 14 + 2 w_1 - 5 x_2\\
w_6 &= 11 + w_1 - 3 x_2\\
w_7 &= 20 + w_1 - 4 x_2\\
w_8 &= 10 - x_2\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, \ldots, 8
\end{aligned}\end{split}\]
Choose \(x_2\) and \(w_2\) as the entering and leaving variable
respectively where
\[x_2 = \min\left\{ x_1, \left\{ w_i \right\}_{i = 2}^8 \right\}_{\geq 0}
= \min\left\{
-\frac{1}{2}, 1, \frac{4}{3}, 2, \frac{14}{5}, \frac{11}{3}, 5, 10
\right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 3, \quad
x_2 = 1, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = 1, \quad
w_4 = 2, \quad
w_5 = 9, \quad
w_6 = 8, \quad
w_7 = 16, \quad
w_8 = 9.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 3 + 5 w_1 - 8 w_2\\
\text{subject to} \quad
x_1 &= 3 + w_1 - 2 w_2\\
x_2 &= 1 + w_1 - w_2\\
w_3 &= 1 - w_1 + 3 w_2\\
w_4 &= 2 - w_1 + 2 w_2\\
w_5 &= 9 - 3 w_1 + 5 w_2\\
w_6 &= 8 - 2 w_1 + 3 w_2\\
w_7 &= 16 - 3 w_1 + 4 w_2\\
w_8 &= 9 - w_1 + w_2\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, \ldots, 8
\end{aligned}\end{split}\]
Choose \(w_1\) and \(w_3\) as the entering and leaving variable
respectively where
\[w_1 = \min\left\{ x_1, x_2, \left\{ w_i \right\}_{i = 3}^8 \right\}_{\geq 0}
= \min\left\{ -3, -1, 1, 2, 3, 4, \frac{16}{3}, 9 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 4, \quad
x_2 = 2, \quad
w_1 = 1, \quad
w_2 = 0, \quad
w_3 = 0, \quad
w_4 = 1, \quad
w_5 = 6, \quad
w_6 = 6, \quad
w_7 = 13, \quad
w_8 = 8.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 3 - 5 w_3 + 7 w_2\\
\text{subject to} \quad
x_1 &= 4 - w_3 + w_2\\
x_2 &= 2 - w_3 + 2 w_2\\
w_1 &= 1 - w_3 + 3 w_2\\
w_4 &= 1 + w_3 - w_2\\
w_5 &= 6 + 3 w_3 - 4 w_2\\
w_6 &= 6 + 2 w_3 - 3 w_2\\
w_7 &= 13 + 3 w_3 - 5 w_2\\
w_8 &= 8 + w_3 - 2 w_2\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, \ldots, 8
\end{aligned}\end{split}\]
Choose \(w_2\) and \(w_4\) as the entering and leaving variable
respectively where
\[w_2 = \min\left\{
x_1, x_2, w_1, \left\{ w_i \right\}_{i = 4}^8
\right\}_{\geq 0}
= \min\left\{
-4, -1, -\frac{1}{3}, 1, \frac{3}{2}, 2, \frac{13}{5}, 4
\right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 5, \quad
x_2 = 4, \quad
w_1 = 4, \quad
w_2 = 1, \quad
w_3 = 0, \quad
w_4 = 0, \quad
w_5 = 2, \quad
w_6 = 3, \quad
w_7 = 8, \quad
w_8 = 6.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 23 + 2 w_3 - 7 w_4\\
\text{subject to} \quad
x_1 &= 5 - w_4\\
x_2 &= 4 + w_3 - 2 w_4\\
w_1 &= 4 + 2 w_3 - 3 w_4\\
w_2 &= 1 + w_3 - w_4\\
w_5 &= 2 - w_3 + 4 w_4\\
w_6 &= 3 - w_3 + 3 w_4\\
w_7 &= 8 - 2 w_3 + 5 w_4\\
w_8 &= 6 - w_3 + 2 w_4\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, \ldots, 8
\end{aligned}\end{split}\]
Choose \(w_3\) and \(w_5\) as the entering and leaving variable
respectively where
\[w_3 = \min\left\{ x_2, w_1, w_2, w_5, w_6, w_7, w_8 \right\}_{\geq 0}
= \min\left\{ -4, -2, -1, 2, 3, 4, 6 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 5, \quad
x_2 = 6, \quad
w_1 = 8, \quad
w_2 = 3, \quad
w_3 = 2, \quad
w_4 = 0, \quad
w_5 = 0, \quad
w_6 = 1, \quad
w_7 = 4, \quad
w_8 = 4.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 27 - 2 w_5 + w_4\\
\text{subject to} \quad
x_1 &= 5 - w_4\\
x_2 &= 6 - w_5 + 2 w_4\\
w_1 &= 8 - 2 w_5 + 5 w_4\\
w_2 &= 3 - w_5 + 3 w_4\\
w_3 &= 2 - w_5 + 4 w_4\\
w_6 &= 1 + w_5 - w_4\\
w_7 &= 4 + 2 w_5 - 3 w_4\\
w_8 &= 4 + w_5 - 2 w_4\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, \ldots, 8
\end{aligned}\end{split}\]
Choose \(w_4\) and \(w_6\) as the entering and leaving variable
respectively where
\[w_4 = \min\left\{ x_1, x_2, w_1, w_2, w_3, w_6, w_7, w_8 \right\}_{\geq 0}
= \min\left\{
5, -3, -\frac{8}{5}, -1, -\frac{1}{2}, 1, \frac{4}{3}, 2
\right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 4, \quad
x_2 = 8, \quad
w_1 = 13, \quad
w_2 = 6, \quad
w_3 = 6, \quad
w_4 = 1, \quad
w_5 = 0, \quad
w_6 = 0, \quad
w_7 = 1, \quad
w_8 = 2.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 28 - w_5 - w_6\\
\text{subject to} \quad
x_1 &= 4 - w_5 + w_6\\
x_2 &= 8 + w_5 - 2 w_6\\
w_1 &= 13 + 3 w_5 - 5 w_6\\
w_2 &= 6 + 2 w_5 - 3 w_6\\
w_3 &= 6 + 3 w_5 - 4 w_6\\
w_4 &= 1 + w_5 - w_6\\
w_7 &= 1 - w_5 + 3 w_6\\
w_8 &= 2 - w_5 + 2 w_6\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, \ldots, 8
\end{aligned}\end{split}\]
Exercise 2.9
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 2 x_1 + 3 x_2 + 4 x_3\\
\text{subject to} \quad
w_1 &= 5 - 2 x_2 - 3 x_3\\
w_2 &= 4 - x_1 - x_2 - 2 x_3\\
w_3 &= 7 - x_1 - 2 x_2 - 3 x_3\\
x_i &\geq 0 \quad i = 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Initial feasible solution:
\[x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
w_1 = 5, \quad
w_2 = 4, \quad
w_3 = 7.\]
Choose \(x_3\) and \(w_1\) as the entering and leaving variable
respectively where
\[x_3 = \min\left\{ w_1, w_2, w_3 \right\}_{\geq 0}
= \min\left\{ \frac{5}{3}, 2, \frac{7}{3} \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 0, \quad
x_2 = 0, \quad
x_3 = \frac{5}{3}, \quad
w_1 = 0, \quad
w_2 = \frac{2}{3}, \quad
w_3 = 2.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \frac{1}{3} \left( 20 + 6 x_1 + x_2 - 4 w_1 \right)\\
\text{subject to} \quad
x_3 &= \frac{1}{3} \left( 5 - 2 x_2 - w_1 \right)\\
w_2 &= \frac{1}{3} \left( 2 - 3 x_1 + x_2 + 2 w_1 \right)\\
w_3 &= 2 - x_1 + w_1\\
x_i &\geq 0 \quad i = 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Choose \(x_1\) and \(w_2\) as the entering and leaving variable
respectively where
\[x_1 = \min\left\{ w_2, w_3 \right\}_{\geq 0}
= \min\left\{ \frac{2}{3}, 2 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = \frac{2}{3}, \quad
x_2 = 0, \quad
x_3 = \frac{5}{3}, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = \frac{4}{3}.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 8 + x_2 - 2 w_2\\
\text{subject to} \quad
x_1 &= \frac{1}{3} \left( 2 + x_2 + 2 w_1 - 3 w_2 \right)\\
x_3 &= \frac{1}{3} \left( 5 - 2 x_2 - w_1 \right)\\
w_3 &= \frac{1}{3} \left( 4 - x_2 + w_1 + 3 w_2 \right)\\
x_i &\geq 0 \quad i = 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Choose \(x_2\) and \(x_3\) as the entering and leaving variable
respectively where
\[x_2 = \min\left\{ x_1, x_3, w_3 \right\}_{\geq 0}
= \min\left\{ -2, \frac{5}{2}, 4 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = \frac{3}{2}, \quad
x_2 = \frac{5}{2}, \quad
x_3 = 0, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = \frac{1}{2}.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \frac{1}{2} \left( 21 - 3 x_3 - w_1 - 4 w_2 \right)\\
\text{subject to} \quad
x_1 &= \frac{1}{2} \left( 3 - x_3 + w_1 - w_2 \right)\\
x_2 &= \frac{1}{2} \left( 5 - 3 x_3 - w_1 \right)\\
w_3 &= \frac{1}{2} \left( 1 + x_3 + w_1 + w_2 \right)\\
x_i &\geq 0 \quad i = 1, 2, 3\\
w_i &\geq 0 \quad i = 1, 2, 3
\end{aligned}\end{split}\]
Exercise 2.10
Rewriting the LP in standard form yields
\[\begin{split}\begin{aligned}
\text{maximize} \quad
6 x_1 + 8 x_2 + 5 x_3 + 9 x_4 &\\
\text{subject to} \quad
x_1 + x_2 + x_3 + x_4 &\leq 1\\
-x_1 - x_2 - x_3 - x_4 &\leq -1\\
x_i &\geq 0 \quad i = 1, 2, 3, 4.
\end{aligned}\end{split}\]
An equivalent representation with slack variables is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 6 x_1 + 8 x_2 + 5 x_3 + 9 x_4\\
\text{subject to} \quad
w_1 &= 1 - x_1 - x_2 - x_3 - x_4\\
w_2 &= 1 + x_1 + x_2 + x_3 + x_4\\
x_i &\geq 0 \quad i = 1, 2, 3, 4\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Initial feasible solution:
\[x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
x_4 = 0, \quad
w_1 = 1, \quad
w_2 = 1.\]
Choose \(x_4\) and \(w_1\) as the entering and leaving variable
respectively since that’s the only choice.
Update the current dictionary’s feasible solution to
\[x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
x_4 = 1, \quad
w_1 = 0, \quad
w_2 = 2.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 9 - 3 x_1 - x_2 - 4 x_3 - 9 w_1\\
\text{subject to} \quad
x_4 &= 1 - x_1 - x_2 - x_3 - w_1\\
w_2 &= 2 - w_1\\
x_i &\geq 0 \quad i = 1, 2, 3, 4\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Exercise 2.11
Rewriting the LP in standard form yields
\[\begin{split}\begin{aligned}
-\text{maximize} \quad
-x_1 - 8 x_2 - 9 x_3 - 2 x_4 - 7 x_5 - 3 x_6 &\\
\text{subject to} \quad
-x_1 - x_2 - x_3 &\leq -1\\
-x_1 + x_4 + x_4 &\leq 0\\
x_1 - x_4 - x_4 &\leq 0\\
-x_2 - x_4 + x_6 &\leq 0\\
x_2 + x_4 - x_6 &\leq 0\\
x_3 + x_5 + x_6 &\leq 1\\
x_i &\geq 0 \quad i = 1, 2, \ldots, 6
\end{aligned}\end{split}\]
An equivalent representation with slack variables is
\[\begin{split}\begin{aligned}
-\text{maximize} \quad
\zeta &= -x_1 - 8 x_2 - 9 x_3 - 2 x_4 - 7 x_5 - 3 x_6\\
\text{subject to} \quad
w_1 &= -1 + x_1 + x_2 + x_3\\
w_2 &= x_1 - x_4 - x_5\\
w_3 &= -x_1 + x_4 + x_5\\
w_4 &= x_2 + x_4 - x_6\\
w_5 &= -x_2 - x_4 + x_6\\
w_6 &= 1 - x_3 - x_5 - x_6\\
x_i &\geq 0 \quad i = 1, 2, \ldots, 6\\
w_i &\geq 0 \quad i = 1, 2, \ldots, 6
\end{aligned}\end{split}\]
Initial infeasible solution:
\[x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
x_4 = 0, \quad
x_5 = 0, \quad
x_6 = 0, \quad
w_1 = -1, \quad
w_2 = 0, \quad
w_3 = 0, \quad
w_4 = 0, \quad
w_5 = 0, \quad
w_6 = 1.\]
The auxiliary problem is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
-x_0 &\\
\text{subject to} \quad
-x_1 - x_2 - x_3 - x_0 &\leq -1\\
-x_1 + x_4 + x_4 - x_0 &\leq 0\\
x_1 - x_4 - x_4 - x_0 &\leq 0\\
-x_2 - x_4 + x_6 - x_0 &\leq 0\\
x_2 + x_4 - x_6 - x_0 &\leq 0\\
x_3 + x_5 + x_6 - x_0 &\leq 1\\
x_i &\geq 0 \quad i = 0, 1, \ldots, 6
\end{aligned}\end{split}\]
and its initial infeasible dictionary is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -x_0\\
\text{subject to} \quad
w_1 &= -1 + x_1 + x_2 + x_3 + x_0\\
w_2 &= x_1 - x_4 - x_5 + x_0\\
w_3 &= -x_1 + x_4 + x_5 + x_0\\
w_4 &= x_2 + x_4 - x_6 + x_0\\
w_5 &= -x_2 - x_4 + x_6 + x_0\\
w_6 &= 1 - x_3 - x_5 - x_6 + x_0\\
x_i &\geq 0 \quad i = 0, 1, \ldots, 6\\
w_i &\geq 0 \quad i = 1, 2, \ldots, 6
\end{aligned}\end{split}\]
Initial infeasible solution for auxiliary problem:
\[x_0 = 0, \quad
x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
x_4 = 0, \quad
x_5 = 0, \quad
x_6 = 0, \quad
w_1 = -1, \quad
w_2 = 0, \quad
w_3 = 0, \quad
w_4 = 0, \quad
w_5 = 0, \quad
w_6 = 1.\]
Pivot the infeasible dictionary with \(x_0\) as the entering variable and
\(w_1\), the most infeasible variable, as the leaving variable. The
resulting dictionary is then
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -1 + x_1 + x_2 + x_3 - w_1\\
\text{subject to} \quad
x_0 &= 1 - x_1 - x_2 - x_3 + w_1\\
w_2 &= 1 - x_2 - x_3 - x_4 - x_5 + w_1\\
w_3 &= 1 - 2 x_1 - x_2 - x_3 + x_4 + x_5 + w_1\\
w_4 &= 1 - x_1 - x_3 + x_4 - x_6 + w_1\\
w_5 &= 1 - x_1 - 2 x_2 - x_3 - x_4 + x_6 + w_1\\
w_6 &= 2 - x_1 - x_2 - 2 x_3 - x_5 - x_6 + w_1\\
x_i &\geq 0 \quad i = 0, 1, \ldots, 6\\
w_i &\geq 0 \quad i = 1, 2, \ldots, 6
\end{aligned}\end{split}\]
and its feasible solution is updated to
\[x_0 = 1, \quad
x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 0, \quad
x_4 = 0, \quad
x_5 = 0, \quad
x_6 = 0, \quad
w_1 = 0, \quad
w_2 = 1, \quad
w_3 = 1, \quad
w_4 = 1, \quad
w_5 = 1, \quad
w_6 = 2.\]
Even though \(x_1\) and \(x_2\) are valid choices, selecting
\(x_3\) will make phase two much easier. Choose \(x_3\) and
\(x_0\) as the entering and leaving variable respectively where
\[x_3 = \min\left\{ x_0, w_2, w_3, w_4, w_5, w_6 \right\}_{\geq 0}
= \min\left\{ 1, 1, 1, 1, 1, 1 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_0 = 0, \quad
x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 1, \quad
x_4 = 0, \quad
x_5 = 0, \quad
x_6 = 0, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = 0, \quad
w_4 = 0, \quad
w_5 = 0, \quad
w_6 = 0.\]
Pivot auxiliary dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= -x_0\\
\text{subject to} \quad
x_3 &= 1 - x_0 - x_1 - x_2 + w_1\\
w_2 &= x_0 + x_1 - x_4 - x_5\\
w_3 &= x_0 - x_1 + x_4 + x_5\\
w_4 &= x_0 + x_2 + x_4 - x_6\\
w_5 &= x_0 - x_2 - x_4 + x_6\\
w_6 &= 2 x_0 + x_1 + x_2 - x_5 - x_6 - w_1\\
x_i &\geq 0 \quad i = 0, 1, \ldots, 6\\
w_i &\geq 0 \quad i = 1, 2, \ldots, 6
\end{aligned}\end{split}\]
The dictionary is optimal for the auxiliary problem, so \(x_0\) can
be dropped and the original objective function can be reintroduced with
the basic variables substituted appropriately:
\[\begin{split}\begin{aligned}
-\text{maximize} \quad
\zeta &= -9 + 8 x_1 + x_2 - 2 x_4 - 7 x_5 - 3 x_6 - 9 w_1\\
\text{subject to} \quad
x_3 &= 1 - x_1 - x_2 + w_1\\
w_2 &= x_1 - x_4 - x_5\\
w_3 &= -x_1 + x_4 + x_5\\
w_4 &= x_2 + x_4 - x_6\\
w_5 &= -x_2 - x_4 + x_6\\
w_6 &= x_1 + x_2 - x_5 - x_6 - w_1\\
x_i &\geq 0 \quad i = 1, 2, \ldots, 6\\
w_i &\geq 0 \quad i = 1, 2, \ldots, 6
\end{aligned}\end{split}\]
Initial feasible solution:
\[x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 1, \quad
x_4 = 0, \quad
x_5 = 0, \quad
x_6 = 0, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = 0, \quad
w_4 = 0, \quad
w_5 = 0, \quad
w_6 = 0.\]
Choose \(x_1\) and \(w_3\) as the entering and leaving variable
respectively where
\[x_1 = \min\left\{ x_3, w_3 \right\}_{\geq 0}
= \min\left\{ 1, 0 \right\}_{\geq 0}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 1, \quad
x_4 = 0, \quad
x_5 = 0, \quad
x_6 = 0, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = 0, \quad
w_4 = 0, \quad
w_5 = 0, \quad
w_6 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
-\text{maximize} \quad
\zeta &= -9 + x_2 + 6 x_4 + x_5 - 3 x_6 - 9 w_1 - 8 w_3\\
\text{subject to} \quad
x_1 &= x_4 + x_5 - w_3\\
x_3 &= 1 - x_2 - x_4 - x_5 + w_1 + w_3\\
w_2 &= -w_3\\
w_4 &= x_2 + x_4 - x_6\\
w_5 &= -x_2 - x_4 + x_6\\
w_6 &= x_2 + x_4 - x_6 - w_1 - w_3\\
x_i &\geq 0 \quad i = 1, 2, \ldots, 6\\
w_i &\geq 0 \quad i = 1, 2, \ldots, 6
\end{aligned}\end{split}\]
Choose \(x_4\) and \(w_5\) as the entering and leaving variable
respectively where
\[x_4 = \min\left\{ x_3, w_5 \right\}_{\geq 0}
= \min\left\{ 0 \right\}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 0, \quad
x_2 = 0, \quad
x_3 = 1, \quad
x_4 = 0, \quad
x_5 = 0, \quad
x_6 = 0, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = 0, \quad
w_4 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
-\text{maximize} \quad
\zeta &= -9 - 5 x_2 + x_5 + 3 x_6 - 9 w_1 - 8 w_3 - 6 w_5\\
\text{subject to} \quad
x_1 &= -x_2 + x_6 - w_3\\
x_3 &= 1 - x_5 - x_6 + w_1 + w_3 + w_5\\
x_4 &= -x_2 + x_6 - w_5\\
w_2 &= -w_3\\
w_4 &= -w_5\\
w_6 &= -w_1 - w_3 - w_5\\
x_i &\geq 0 \quad i = 1, 2, \ldots, 6\\
w_i &\geq 0 \quad i = 1, 2, \ldots, 6
\end{aligned}\end{split}\]
Choose \(x_6\) and \(x_3\) as the entering and leaving variable
respectively where
\[x_6 = \min\left\{ x_3 \right\}_{\geq 0}
= \min\left\{ 1, 0 \right\}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 1, \quad
x_2 = 0, \quad
x_3 = 0, \quad
x_4 = 1, \quad
x_5 = 0, \quad
x_6 = 1, \quad
w_1 = 0, \quad
w_2 = 0, \quad
w_3 = 0, \quad
w_4 = 0, \quad
w_5 = 0, \quad
w_6 = 0.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
-\text{maximize} \quad
\zeta &= -6 - 5 x_2 - 3 x_3 - 2 x_5 - 6 w_1 - 5 w_3 - 3 w_5\\
\text{subject to} \quad
x_1 &= 1 - x_2 - x_3 - x_5 + w_1 + w_5\\
x_4 &= 1 - x_2 - x_3 - x_5 + w_1 + w_3\\
x_6 &= 1 - x_3 - x_5 + w_1 + w_3 + w_5\\
w_2 &= -w_3\\
w_4 &= -w_5\\
w_6 &= -w_1 - w_3 - w_5\\
x_i &\geq 0 \quad i = 1, 2, \ldots, 6\\
w_i &\geq 0 \quad i = 1, 2, \ldots, 6
\end{aligned}\end{split}\]
Since no other coefficients are positive, the solution is optimal.
Exercise 2.12 and Exercise 2.13
The previous exercises were solved using the proposed tool.
Exercise 2.14
Choose \(x_6\) and \(w_1\) as the entering and leaving variable
respectively where
\[x_6 = \min\left\{ w_1, w_2 \right\}_{\geq 0}
= \min\left\{ 1, \frac{5}{3} \right\}.\]
Update the current dictionary’s feasible solution to
\[x_1 = 0, \quad
x_2 = 1, \quad
w_1 = 0, \quad
w_2 = 2.\]
Pivot dictionary to
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 9 + 7 x_1 - 6 w_1\\
\text{subject to} \quad
x_2 &= 1 + x_1 - w_1\\
w_2 &= 2 - 5 x_1 + 3 w_1\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Exercise 2.15
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 4 - w_1 - 2 x_2\\
\text{subject to} \quad
x_1 &= 3 - 2 x_2\\
w_2 &= 1 + w_1 - x_2\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Suppose the optimal solution for the above dictionary \(D_0\) is
\[x_1 = 3, \quad
x_2 = 0, \quad
w_1 = 0, \quad
w_2 = 1.\]
Since pivot operations are reversible,
one can mechanically trace back to original problem where \(w_1\) and
\(w_2\) are the initial slack variables. As shown in
Exercise 2.17 and
Exercise 2.18, reverse pivots only need to
examine the variables whose coefficient is negative in the objective function.
Even though the following dictionaries are still feasible with the proposed
optimal solution, none of them have \(w_1\) and \(w_2\) as the initial
slack variables:
\(D_{1 \mapsto 0}\) cannot be pivoted to \(D_0\) with one iteration.
\(D_{6 \mapsto 3} = D_{4 \mapsto 2}\), but \(D_{4 \mapsto 2}\) cannot
be pivoted to \(D_{6 \mapsto 3}\) with one iteration.
\(D_{5 \mapsto 2} = D_{1 \mapsto 0}\), but \(D_{1 \mapsto 0}\) cannot
be pivoted to \(D_{5 \mapsto 2}\) with one iteration.
\(D_{7 \mapsto 4}\) cannot be pivoted to \(D_{4 \mapsto 2}\) with one
iteration.
If feasibility preservation of intermediate dictionaries are no longer
necessary, then choose \(w_1\) and \(x_1\) as the entering and leaving
variable respectively where
\[w_1 = \frac{3 - x_1 - 2 x_2}{0}.\]
Adopting the convention where \(\frac{0}{0}\) is treated as a zero, the
corrresponding pivoted dictionary is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 4 - \frac{3 - x_1 - 2 x_2}{0} - 2 x_2\\
\text{subject to} \quad
w_1 &= \frac{3 - x_1 - 2 x_2}{0}\\
w_2 &= 1 + \frac{3 - x_1 - 2 x_2}{0} - x_2\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
\(D_{1 \mapsto 0}\)
Let \(w_1\) be the previous leaving variable and \(w_2\) be the previous
entering variable.
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 5 - 3 x_2 - w_2\\
\text{subject to} \quad
x_1 &= 3 - 2 x_2\\
w_1 &= -1 + x_2 + w_2\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
No need to continue along this path since the reverse pivot is not reversible.
\(D_{2 \mapsto 0}\)
Let \(x_2\) be the previous leaving variable and \(w_2\) be the previous
entering variable.
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 2 - 3 w_1 + 2 w_2\\
\text{subject to} \quad
x_1 &= 1 - 2 w_1 + 2 w_2\\
x_2 &= 1 + w_1 - w_2\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
\(D_{3 \mapsto 0}\)
Let \(x_2\) be the previous leaving variable and \(x_1\) be the previous
entering variable.
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 1 + x_1 - w_1\\
\text{subject to} \quad
x_2 &= \frac{1}{2} (3 - x_1)\\
w_2 &= \frac{1}{2} (-1 + x_1 + 2 w_1)\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
\(D_{4 \mapsto 2}\)
Let \(w_1\) be the previous leaving variable and \(x_1\) be the previous
entering variable.
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \frac{1}{2} (1 + 3 x_1 - 2 w_2)\\
\text{subject to} \quad
x_2 &= \frac{1}{2} (3 - x_1)\\
w_1 &= \frac{1}{2} (1 - x_1 + 2 w_2)\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
\(D_{5 \mapsto 2}\)
Let \(w_1\) be the previous leaving variable and \(x_2\) be the previous
entering variable. The resulting dictionary is equal to
\(D_{1 \mapsto 0}\).
\(D_{6 \mapsto 3}\)
Let \(w_1\) be the previous leaving variable and \(w_2\) be the previous
entering variable. The resulting dictionary is equal to
\(D_{4 \mapsto 2}\).
\(D_{7 \mapsto 4}\)
Let \(w_2\) be the previous leaving variable and \(w_1\) be the previous
entering variable.
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \frac{1}{2} (3 + x_1 - 4 w_1)\\
\text{subject to} \quad
x_2 &= \frac{1}{2} (3 - x_1)\\
w_2 &= \frac{1}{2} (-1 + x_1 + 2 w_1)\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
No need to continue along this path since the reverse pivot is not reversible.
The only choice for a pivot is choosing \(x_1\) and \(x_2\) as the
entering and leaving variable respectively resulting in
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= 3 - x_2 - 2 w_1\\
\text{subject to} \quad
x_1 &= 3 - 2 x_2\\
w_2 &= 1 - x_2 + w_1\\
x_i &\geq 0 \quad i = 1, 2\\
w_i &\geq 0 \quad i = 1, 2
\end{aligned}\end{split}\]
Exercise 2.16
The sequence of basic solutions produced by the simplex method starts at
\((0, 0)\) and advances counter-clockwise along the perimeter of the
plot until the vertex \((4, 8)\) is encountered.
<Figure size 640x480 with 1 Axes>
Exercise 2.17
See Exercise 2.9.
Exercise 2.18
The general linear programming problem with slack variables is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \sum_{j \in \mathcal{N}} c_j x_j\\
\text{subject to} \quad
w_i &= b_i - \sum_{j \in \mathcal{N}}^n a_{ij} x_j
\quad i \in \mathcal{B}\\
x_j &\geq 0 \quad j = 1, 2, \ldots, n\\
w_i &\geq 0 \quad i = 1, 2, \ldots, m
\end{aligned}\end{split}\]
Without loss of generality, the entering variable \(x_e\) will be chosen
from \(\{j \in \mathcal{N} \colon c_j > 0 \}\); consequently, the leaving
variable \(w_l\) will be chosen from
\(\{i \in \mathcal{B} \colon a_{ie} > 0 \text{ and } \frac{b_i}{a_{ie}} \text{is minimal}\}\).
Pivoting will result in
\[\begin{split}x_e &= a_{le}^{-1} \left(
b_l - w_l - \sum_{j \in \mathcal{N} \setminus e}^n a_{lj} x_j
\right)\\
\\
\zeta &= c_e x_e + \sum_{j \in \mathcal{N} \setminus e}^n c_j x_j
= \frac{c_e}{a_{le}} b_l - \frac{c_e}{a_{le}} w_l +
\sum_{j \in \mathcal{N} \setminus e}^n
\left( c_j - \frac{c_e a_{lj}}{a_{le}} \right) x_j\end{split}\]
where the other constraints are replaced appropriately, but is not essential
to the conclusion of this proof.
Since \(-\frac{c_e}{a_{le}}\) must be negative, the nonbasic variable
\(w_l\) cannot be selected in the next iteration.
Exercise 2.19
The equivalent problem with slack variables is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \sum_{j = 1}^n p_j x_j\\
\text{subject to} \quad
w_0 &= \beta - \sum_{j = 1}^n q_j x_j\\
w_j &= 1 - x_j\\
x_j &\geq 0 \quad j = 1, 2, \ldots, n\\
w_j &\geq 0 \quad j = 1, 2, \ldots, n\\
w_0 &\geq 0
\end{aligned}\end{split}\]
where the initial feasible solution is
\[x_j = 0 \qquad \land \qquad w_0 = \beta \qquad \land \qquad w_j = 1.\]
Suppose \(x_1\) is the first entering variable. Pivoting requires
determining
\[x_1 = \min\left\{ w_0, w_1 \right\}_{\geq 0}
= \min\left\{ \frac{\beta}{q_1}, 1 \right\}.\]
In order to make progress and simplify the analysis, assume
\[\beta \geq q_1 + q_2 + \cdots + q_{k - 2} + q_{k - 1}\]
where \(k \in [0, n]\) is the largest possible index. This will cause the
simplex algorithm to swap \(x_j\) and \(w_j\) in each constraint where
\(1 \leq j < k\) resulting in
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \sum_{j = 1}^{k - 1} p_j (1 - w_j) + \sum_{j = k}^n p_j x_j\\
\text{subject to} \quad
w_0 &= \beta - \sum_{j = 1}^{k - 1} q_j (1 - w_j) - \sum_{j = k}^n q_j x_j\\
x_j &= 1 - w_j \quad j < k\\
w_j &= 1 - x_j \quad j \geq k\\
x_j &\geq 0 \quad j = 1, 2, \ldots, n\\
w_j &\geq 0 \quad j = 1, 2, \ldots, n\\
w_0 &\geq 0
\end{aligned}\end{split}\]
Now pivot \(x_k \leftrightarrow w_0\) since
\[x_k = \min\left\{ w_0, w_k \right\}_{\geq 0}
= \min\left\{ \frac{\beta - \sum_{j = 1}^{k - 1} q_j}{q_k}, 1 \right\}.\]
Update the current dictionary’s feasible solution to
\[\begin{split}x_j &= 1 \quad j < k,\\
x_k &= \frac{\beta - \sum_{j = 1}^{k - 1} q_j}{q_k},\\
x_j &= 0 \quad j > k,\\
w_0 &= 0,\\
w_j &= 0 \quad j < k,\\
w_k &= 1 - \frac{\beta - \sum_{j = 1}^{k - 1} q_j}{q_k},\\
w_j &= 1 \quad j > k.\end{split}\]
The resulting dictionary is
\[\begin{split}\begin{aligned}
\text{maximize} \quad
\zeta &= \frac{p_k}{q_k} (\beta - w_0) +
\sum_{j = 1}^{k - 1} p_j - \frac{p_k}{q_k} q_j +
\left( \frac{p_k}{q_k} q_j - p_j \right) w_j +
\sum_{j = k + 1}^n \left( p_j - \frac{p_k}{q_k} q_j \right) x_j\\
\text{subject to} \quad
x_k &= \frac{1}{q_k}
\left(
\beta - \sum_{j = 1}^{k - 1} q_j (1 - w_j) - w_0 -
\sum_{j = k + 1}^n q_j x_j
\right)\\
x_j &= 1 - w_j \quad j < k\\
w_k &= 1 - \frac{1}{q_k}
\left(
\beta - \sum_{j = 1}^{k - 1} q_j (1 - w_j) - w_0 -
\sum_{j = k + 1}^n q_j x_j
\right)\\
w_j &= 1 - x_j \quad j > k\\
x_j &\geq 0 \quad j = 1, 2, \ldots, n\\
w_j &\geq 0 \quad j = 1, 2, \ldots, n\\
w_0 &\geq 0
\end{aligned}\end{split}\]
This dictionary is optimal if all objective coefficients are non-positive
since that would make the set of entering variables empty. This is the
case if the following assumption
\[\frac{p_1}{q_1} > \cdots > \frac{p_{k - 1}}{q_{k - 1}} >
\frac{p_k}{q_k} > \frac{p_{k + 1}}{q_{k + 1}} > \cdots > \frac{p_n}{q_n}\]
holds since that would make \(\frac{p_k}{q_k} q_j - p_j < 0\) for
\(j < k\) and \(p_j - \frac{p_k}{q_k} q_j < 0\) for \(j > k\).
Note that if one applies the book’s proposed assumption, the optimal solution
is the reverse order. The derivation would start with \(x_n\) instead of
\(x_1\) and
\(\beta \geq q_{k + 1} + q_{k + 2} + \cdots + q_{n - 1} + q_n\) where
\(k \in [0, n]\) is the smallest possible index.
References
- Bur
Jim Burke. Introduction. https://www.math.washington.edu/ burke/crs/407/notes/section1.pdf. Section 1.5.1 accessed on 2016-11-27.