The Simplex Method in Matrix Notation¶
Exercise 6.1¶
(a)¶
(b)¶
(c)¶
(d)¶
(e)¶
Applying (6.10) shows that the associated current primal solution is feasible.
(f)¶
Since \(z^*_\mathcal{N}\) has some negative components, the current solution is not optimal.
(g)¶
The dictionary is degenerate because one of its basic variables is zero.
Exercise 6.2¶
(a)¶
(b)¶
(c)¶
(d)¶
(e)¶
(f)¶
(g)¶
(h)¶
(i)¶
(j)¶
The primal dictionary in succinct form (6.10) is
Exercise 6.3¶
Rewriting Exercise 2.1 into matrix form yields
Iteration 1¶
- Step 1
Since \(z^*_\mathcal{N}\) has some negative components, the current solution is not optimal.
- Step 2
Applying Bland’s rule restricts the entering variable index to \(j = 1 \in \mathcal{N}\).
- Step 3
The primal step direction is
\[\begin{split}\Delta x_\mathcal{B} = B^{-1} N e_j = \begin{bmatrix} 2 & 1 & 1 & 3\\ 1 & 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ 0\\ 0 \end{bmatrix} = \begin{bmatrix} 2\\ 1 \end{bmatrix}.\end{split}\]- Step 4
The primal step length is
\[t = \left( \max_{i \in \mathcal{B}} \frac{\Delta x_i}{x^*_i} \right)^{-1} = \left( \max \left\{ \frac{2}{5}, \frac{1}{3} \right\} \right)^{-1} = \frac{5}{2}.\]- Step 5
The leaving variable index is \(i = 5 \in \mathcal{B}\).
- Step 6
The dual step direction is
\[\begin{split}\Delta z_\mathcal{N} = -\left( B^{-1} N \right)^\top \mathbf{e}_i = -\begin{bmatrix} 2 & 1\\ 1 & 3\\ 1 & 1\\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1\\ 0 \end{bmatrix} = \begin{bmatrix} -2\\ -1\\ -1\\ -3 \end{bmatrix}.\end{split}\]- Step 7
The dual step length is
\[s = \frac{z^*_j}{\Delta z_j} = \frac{-6}{-2} = 3.\]- Step 8
The current primal and dual solutions are updated to
\[\begin{split}x^*_\mathcal{B} \leftarrow x^*_\mathcal{B} - t \Delta x_\mathcal{B} = \begin{bmatrix} 5\\ 3 \end{bmatrix} - \frac{5}{2} \begin{bmatrix} 2\\ 1 \end{bmatrix} = \begin{bmatrix} 0\\ \frac{1}{2} \end{bmatrix} \quad \land \quad x^*_j \leftarrow t = \frac{5}{2}\end{split}\]and
\[\begin{split}z^*_\mathcal{N} \leftarrow z^*_\mathcal{N} - s \Delta z_\mathcal{N} = \begin{bmatrix} -6\\ -8\\ -5\\ -9 \end{bmatrix} - 3 \begin{bmatrix} -2\\ -1\\ -1\\ -3 \end{bmatrix} = \begin{bmatrix} 0\\ -5\\ -2\\ 0 \end{bmatrix} \quad \land \quad z^*_i \leftarrow s = 3.\end{split}\]- Step 9
The current basis is updated to
\[\begin{split}\mathcal{B} &= \{ 1, 6 \} \quad & \quad \mathcal{N} &= \{ 5, 2, 3, 4 \}\\ B &= \begin{bmatrix} 2 & 0\\ 1 & 1 \end{bmatrix} \quad & \quad N &= \begin{bmatrix} 1 & 1 & 1 & 3\\ 0 & 3 & 1 & 2 \end{bmatrix}\\ x^*_\mathcal{B} &= \begin{bmatrix} \frac{5}{2}\\ \frac{1}{2} \end{bmatrix} \quad & \quad z^*_\mathcal{N} &= \begin{bmatrix} 3\\ -5\\ -2\\ 0 \end{bmatrix}.\end{split}\]
Iteration 2¶
- Step 1
Since \(z^*_\mathcal{N}\) has some negative components, the current solution is not optimal.
- Step 2
Applying Bland’s rule restricts the entering variable index to \(j = 2 \in \mathcal{N}\).
- Step 3
The primal step direction is
\[\begin{split}\Delta x_\mathcal{B} = B^{-1} N e_j = \left( \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 3\\ -1 & 5 & 1 & 1 \end{bmatrix} \right) \begin{bmatrix} 0\\ 1\\ 0\\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\ \frac{5}{2} \end{bmatrix}.\end{split}\]- Step 4
The primal step length is
\[t = \left( \max_{i \in \mathcal{B}} \frac{\Delta x_i}{x^*_i} \right)^{-1} = \left( \max \left\{ \frac{0.5}{2.5}, \frac{2.5}{0.5} \right\} \right)^{-1} = \frac{1}{5}.\]- Step 5
The leaving variable index is \(i = 6 \in \mathcal{B}\).
- Step 6
The dual step direction is
\[\begin{split}\Delta z_\mathcal{N} = -\left( B^{-1} N \right)^\top \mathbf{e}_i = -\left( \frac{1}{2} \begin{bmatrix} 1 & -1\\ 1 & 5\\ 1 & 1\\ 3 & 1 \end{bmatrix} \right) \begin{bmatrix} 0\\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1\\ -5\\ -1\\ -1 \end{bmatrix}.\end{split}\]- Step 7
The dual step length is
\[s = \frac{z^*_j}{\Delta z_j} = \frac{-5}{-5 / 2} = 2.\]- Step 8
The current primal and dual solutions are updated to
\[\begin{split}x^*_\mathcal{B} \leftarrow x^*_\mathcal{B} - t \Delta x_\mathcal{B} = \begin{bmatrix} \frac{5}{2}\\ \frac{1}{2} \end{bmatrix} - \frac{1}{5} \begin{bmatrix} \frac{1}{2}\\ \frac{5}{2} \end{bmatrix} = \begin{bmatrix} \frac{12}{5}\\ 0 \end{bmatrix} \quad \land \quad x^*_j \leftarrow t = \frac{1}{5}\end{split}\]and
\[\begin{split}z^*_\mathcal{N} \leftarrow z^*_\mathcal{N} - s \Delta z_\mathcal{N} = \begin{bmatrix} 3\\ -5\\ -2\\ 0 \end{bmatrix} - 2 \left( \frac{1}{2} \begin{bmatrix} 1\\ -5\\ -1\\ -1 \end{bmatrix} \right) = \begin{bmatrix} 2\\ 0\\ -1\\ 1 \end{bmatrix} \quad \land \quad z^*_i \leftarrow s = 2.\end{split}\]- Step 9
The current basis is updated to
\[\begin{split}\mathcal{B} &= \{ 1, 2 \} \quad & \quad \mathcal{N} &= \{ 5, 6, 3, 4 \}\\ B &= \begin{bmatrix} 2 & 1\\ 1 & 3 \end{bmatrix} \quad & \quad N &= \begin{bmatrix} 1 & 0 & 1 & 3\\ 0 & 1 & 1 & 2 \end{bmatrix}\\ x^*_\mathcal{B} &= \begin{bmatrix} \frac{12}{5}\\ \frac{1}{5} \end{bmatrix} \quad & \quad z^*_\mathcal{N} &= \begin{bmatrix} 2\\ 2\\ -1\\ 1 \end{bmatrix}.\end{split}\]
Iteration 3¶
- Step 1
Since \(z^*_\mathcal{N}\) has some negative components, the current solution is not optimal.
- Step 2
Applying Bland’s rule restricts the entering variable index to \(j = 3 \in \mathcal{N}\).
- Step 3
The primal step direction is
\[\begin{split}\Delta x_\mathcal{B} = B^{-1} N e_j = \left( \frac{1}{5} \begin{bmatrix} 3 & -1 & 2 & 7\\ -1 & 2 & 1 & 1 \end{bmatrix} \right) \begin{bmatrix} 0\\ 0\\ 1\\ 0 \end{bmatrix} = \begin{bmatrix} \frac{2}{5}\\ \frac{1}{5} \end{bmatrix}.\end{split}\]- Step 4
The primal step length is
\[t = \left( \max_{i \in \mathcal{B}} \frac{\Delta x_i}{x^*_i} \right)^{-1} = \left( \max \left\{ \frac{0.4}{2.4}, \frac{0.2}{0.2} \right\} \right)^{-1} = 1.\]- Step 5
The leaving variable index is \(i = 2 \in \mathcal{B}\).
- Step 6
The dual step direction is
\[\begin{split}\Delta z_\mathcal{N} = -\left( B^{-1} N \right)^\top \mathbf{e}_i = -\left( \frac{1}{5} \begin{bmatrix} 3 & -1\\ -1 & 2\\ 2 & 1\\ 7 & 1 \end{bmatrix} \right) \begin{bmatrix} 0\\ 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1\\ -2\\ -1\\ -1 \end{bmatrix}.\end{split}\]- Step 7
The dual step length is
\[s = \frac{z^*_j}{\Delta z_j} = \frac{-1}{-1 / 5} = 5.\]- Step 8
The current primal and dual solutions are updated to
\[\begin{split}x^*_\mathcal{B} \leftarrow x^*_\mathcal{B} - t \Delta x_\mathcal{B} = \begin{bmatrix} \frac{12}{5}\\ \frac{1}{5} \end{bmatrix} - (1) \begin{bmatrix} \frac{2}{5}\\ \frac{1}{5} \end{bmatrix} = \begin{bmatrix} 2\\ 0 \end{bmatrix} \quad \land \quad x^*_j \leftarrow t = 1\end{split}\]and
\[\begin{split}z^*_\mathcal{N} \leftarrow z^*_\mathcal{N} - s \Delta z_\mathcal{N} = \begin{bmatrix} 2\\ 2\\ -1\\ 1 \end{bmatrix} - 5 \left( \frac{1}{5} \begin{bmatrix} 1\\ -2\\ -1\\ -1 \end{bmatrix} \right) = \begin{bmatrix} 1\\ 4\\ 0\\ 2 \end{bmatrix} \quad \land \quad z^*_i \leftarrow s = 5.\end{split}\]- Step 9
The current basis is updated to
\[\begin{split}\mathcal{B} &= \{ 1, 3 \} \quad & \quad \mathcal{N} &= \{ 5, 6, 2, 4 \}\\ B &= \begin{bmatrix} 2 & 1\\ 1 & 1 \end{bmatrix} \quad & \quad N &= \begin{bmatrix} 1 & 0 & 1 & 3\\ 0 & 1 & 3 & 2 \end{bmatrix}\\ x^*_\mathcal{B} &= \begin{bmatrix} 2\\ 1 \end{bmatrix} \quad & \quad z^*_\mathcal{N} &= \begin{bmatrix} 1\\ 4\\ 5\\ 2 \end{bmatrix}.\end{split}\]
Iteration 4¶
- Step 1
Since \(z^*_\mathcal{N}\) has all non-negative components, the current solution is optimal. The optimal objective function value is
\[\zeta^* = 6 x_1^* + 8 x_2^* + 5 x_3^* + 9 x_4^* = 17.\]
Exercise 6.4¶
Rewriting Exercise 2.4 into matrix form yields
Iteration 1¶
- Step 1
Since \(x^*_\mathcal{B}\) has some negative components, the current solution is not optimal.
- Step 2
Applying Bland’s rule restricts the entering variable index to \(i = 4 \in \mathcal{B}\).
- Step 3
The dual step direction is
\[\begin{split}\Delta z_\mathcal{N} = -\left( B^{-1} N \right)^\top \mathbf{e}_i = -\begin{bmatrix} 2 & 2\\ -5 & -1\\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1\\ 0 \end{bmatrix} = \begin{bmatrix} -2\\ 5\\ -1 \end{bmatrix}.\end{split}\]- Step 4
The dual step length is
\[s = \left( \max_{j \in \mathcal{N}} \frac{\Delta z_j}{z^*_j} \right)^{-1} = \left( \max \left\{ \frac{-2}{1}, \frac{5}{3}, \frac{-1}{1} \right\} \right)^{-1} = \frac{3}{5}.\]- Step 5
The leaving variable index is \(j = 2 \in \mathcal{N}\).
- Step 6
The primal step direction is
\[\begin{split}\Delta x_\mathcal{B} = B^{-1} N e_j = \begin{bmatrix} 2 & -5 & 1\\ 2 & -1 & 2 \end{bmatrix} \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} = \begin{bmatrix} -5\\ -1 \end{bmatrix}.\end{split}\]- Step 7
The primal step length is
\[t = \frac{x^*_i}{\Delta x_i} = \frac{-5}{-5} = 1.\]- Step 8
The current primal and dual solutions are updated to
\[\begin{split}x^*_\mathcal{B} \leftarrow x^*_\mathcal{B} - t \Delta x_\mathcal{B} = \begin{bmatrix} -5\\ 4 \end{bmatrix} - (1) \begin{bmatrix} -5\\ -1 \end{bmatrix} = \begin{bmatrix} 0\\ 5 \end{bmatrix} \quad \land \quad x^*_j \leftarrow t = 1\end{split}\]and
\[\begin{split}z^*_\mathcal{N} \leftarrow z^*_\mathcal{N} - s \Delta z_\mathcal{N} = \begin{bmatrix} 1\\ 3\\ 1 \end{bmatrix} - \frac{3}{5} \begin{bmatrix} -2\\ 5\\ -1 \end{bmatrix} = \begin{bmatrix} \frac{11}{5}\\ 0\\ \frac{8}{5} \end{bmatrix} \quad \land \quad z^*_i \leftarrow s = \frac{3}{5}.\end{split}\]- Step 9
The current basis is updated to
\[\begin{split}\mathcal{B} &= \{ 2, 5 \} \quad & \quad \mathcal{N} &= \{ 1, 4, 3 \}\\ B &= \begin{bmatrix} -5 & 0\\ -1 & 1 \end{bmatrix} \quad & \quad N &= \begin{bmatrix} 2 & 1 & 1\\ 2 & 0 & 2 \end{bmatrix}\\ x^*_\mathcal{B} &= \begin{bmatrix} 1\\ 5 \end{bmatrix} \quad & \quad z^*_\mathcal{N} &= \begin{bmatrix} \frac{11}{5}\\ \frac{3}{5}\\ \frac{8}{5} \end{bmatrix}.\end{split}\]
Iteration 2¶
- Step 1
Since \(x^*_\mathcal{B}\) has all non-negative components, the current solution is optimal. The optimal objective function value is
\[\zeta^* = -x_1^* - 3 x_2^* - x_3^* = -3.\]
Exercise 6.5¶
Rewriting Exercise 2.3 into matrix form yields
Since both \(b\) and \(c_\mathcal{N}\) have some negative components, arbitrarily set \(c_\mathcal{N} = \begin{bmatrix} -1\\ -1\\ -1 \end{bmatrix}\) to make the problem dual feasible.
Iteration 1¶
- Step 1
Since \(x^*_\mathcal{B}\) has some negative components, the current solution is not optimal.
- Step 2
Applying Bland’s rule restricts the entering variable index to \(i = 4 \in \mathcal{B}\).
- Step 3
The dual step direction is
\[\begin{split}\Delta z_\mathcal{N} = -\left( B^{-1} N \right)^\top \mathbf{e}_i = -\begin{bmatrix} -1 & 2\\ -1 & -1\\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1\\ 0 \end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}.\end{split}\]- Step 4
The dual step length is
\[s = \left( \max_{j \in \mathcal{N}} \frac{\Delta z_j}{z^*_j} \right)^{-1} = \left( \max \left\{ \frac{1}{1}, \frac{1}{1}, \frac{1}{1} \right\} \right)^{-1} = 1.\]- Step 5
Applying Bland’s rule restricts the leaving variable index to \(j = 1 \in \mathcal{N}\).
- Step 6
The primal step direction is
\[\begin{split}\Delta x_\mathcal{B} = B^{-1} N e_j = \begin{bmatrix} -1 & -1 & -1\\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} = \begin{bmatrix} -1\\ 2 \end{bmatrix}.\end{split}\]- Step 7
The primal step length is
\[t = \frac{x^*_i}{\Delta x_i} = \frac{-2}{-1} = 2.\]- Step 8
The current primal and dual solutions are updated to
\[\begin{split}x^*_\mathcal{B} \leftarrow x^*_\mathcal{B} - t \Delta x_\mathcal{B} = \begin{bmatrix} -2\\ 1 \end{bmatrix} - (2) \begin{bmatrix} -1\\ 2 \end{bmatrix} = \begin{bmatrix} 0\\ -3 \end{bmatrix} \quad \land \quad x^*_j \leftarrow t = 2\end{split}\]and
\[\begin{split}z^*_\mathcal{N} \leftarrow z^*_\mathcal{N} - s \Delta z_\mathcal{N} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} - (1) \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \quad \land \quad z^*_i \leftarrow s = 1.\end{split}\]- Step 9
The current basis is updated to
\[\begin{split}\mathcal{B} &= \{ 1, 5 \} \quad & \quad \mathcal{N} &= \{ 4, 2, 3 \}\\ B &= \begin{bmatrix} -1 & 0\\ 2 & 1 \end{bmatrix} \quad & \quad N &= \begin{bmatrix} 1 & -1 & -1\\ 0 & -1 & 1 \end{bmatrix}\\ x^*_\mathcal{B} &= \begin{bmatrix} 2\\ -3 \end{bmatrix} \quad & \quad z^*_\mathcal{N} &= \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}.\end{split}\]
Iteration 2¶
- Step 1
Since \(x^*_\mathcal{B}\) has some negative components, the current solution is not optimal.
- Step 2
Applying Bland’s rule restricts the entering variable index to \(i = 5 \in \mathcal{B}\).
- Step 3
The dual step direction is
\[\begin{split}\Delta z_\mathcal{N} = -\left( B^{-1} N \right)^\top \mathbf{e}_i = -\begin{bmatrix} -1 & 2\\ 1 & -3\\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0\\ 1 \end{bmatrix} = \begin{bmatrix} -2\\ 3\\ 1 \end{bmatrix}.\end{split}\]- Step 4
The dual step length is
\[s = \left( \max_{j \in \mathcal{N}} \frac{\Delta z_j}{z^*_j} \right)^{-1} = \left( \max \left\{ \frac{-2}{1}, \frac{3}{0}, \frac{1}{0} \right\} \right)^{-1} = 0.\]- Step 5
Applying Bland’s rule restricts the leaving variable index to \(j = 2 \in \mathcal{N}\).
- Step 6
The primal step direction is
\[\begin{split}\Delta x_\mathcal{B} = B^{-1} N e_j = \begin{bmatrix} -1 & 1 & 1\\ 2 & -3 & -1 \end{bmatrix} \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} = \begin{bmatrix} 1\\ -3 \end{bmatrix}.\end{split}\]- Step 7
The primal step length is
\[t = \frac{x^*_i}{\Delta x_i} = \frac{-3}{-3} = 1.\]- Step 8
The current primal and dual solutions are updated to
\[\begin{split}x^*_\mathcal{B} \leftarrow x^*_\mathcal{B} - t \Delta x_\mathcal{B} = \begin{bmatrix} 2\\ -3 \end{bmatrix} - (1) \begin{bmatrix} 1\\ -3 \end{bmatrix} = \begin{bmatrix} 1\\ 0 \end{bmatrix} \quad \land \quad x^*_j \leftarrow t = 1\end{split}\]and
\[\begin{split}z^*_\mathcal{N} \leftarrow z^*_\mathcal{N} - s \Delta z_\mathcal{N} = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} - (0) \begin{bmatrix} -2\\ 3\\ 1 \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} \quad \land \quad z^*_i \leftarrow s = 0.\end{split}\]- Step 9
The current basis is updated to
\[\begin{split}\mathcal{B} &= \{ 1, 2 \} \quad & \quad \mathcal{N} &= \{ 4, 5, 3 \}\\ B &= \begin{bmatrix} -1 & -1\\ 2 & -1 \end{bmatrix} \quad & \quad N &= \begin{bmatrix} 1 & 0 & -1\\ 0 & 1 & 1 \end{bmatrix}\\ x^*_\mathcal{B} &= \begin{bmatrix} 1\\ 1 \end{bmatrix} \quad & \quad z^*_\mathcal{N} &= \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}.\end{split}\]
Iteration 3¶
Since \(x^*_\mathcal{B}\) has all non-negative components, the current solution is optimal for the modified objective. The original objective
can be reinstated by setting
where \(c_{\mathcal{N'} \cap \mathcal{B}}\) is a vector whose elements are zero when the corresponding variable index \(i \in \mathcal{B} \setminus \mathcal{N'}\).
- Step 1
Since \(z^*_\mathcal{N}\) has some negative components, the current solution is not optimal.
- Step 2
Applying Bland’s rule restricts the entering variable index to \(j = 3 \in \mathcal{N}\).
- Step 3
The primal step direction is
\[\begin{split}\Delta x_\mathcal{B} = B^{-1} N e_j = \frac{1}{3} \begin{bmatrix} -1 & 1 & 2\\ -2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{3}\\ \frac{1}{3} \end{bmatrix}.\end{split}\]- Step 4
The primal step length is
\[t = \left( \max_{i \in \mathcal{B}} \frac{\Delta x_i}{x^*_i} \right)^{-1} = \left( \max \left\{ \frac{2 / 3}{1}, \frac{1 / 3}{1} \right\} \right)^{-1} = \frac{3}{2}.\]- Step 5
The leaving variable index is \(i = 1 \in \mathcal{B}\).
- Step 6
The dual step direction is
\[\begin{split}\Delta z_\mathcal{N} = -\left( B^{-1} N \right)^\top \mathbf{e}_i = -\frac{1}{3} \begin{bmatrix} -1 & -2\\ 1 & -1\\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1\\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{3}\\ \frac{-1}{3}\\ \frac{-2}{3} \end{bmatrix}.\end{split}\]- Step 7
The dual step length is
\[s = \frac{z^*_j}{\Delta z_j} = \frac{-2 / 3}{-2 / 3} = 1.\]- Step 8
The current primal and dual solutions are updated to
\[\begin{split}x^*_\mathcal{B} \leftarrow x^*_\mathcal{B} - t \Delta x_\mathcal{B} = \begin{bmatrix} 1\\ 1 \end{bmatrix} - \frac{3}{2} \begin{bmatrix} \frac{2}{3}\\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0\\ \frac{1}{2} \end{bmatrix} \quad \land \quad x^*_j \leftarrow t = \frac{3}{2}\end{split}\]and
\[\begin{split}z^*_\mathcal{N} \leftarrow z^*_\mathcal{N} - s \Delta z_\mathcal{N} = \frac{1}{3} \begin{bmatrix} 10\\ 8\\ -2 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1\\ -1\\ -2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 9\\ 9\\ 4 \end{bmatrix} \quad \land \quad z^*_i \leftarrow s = 1.\end{split}\]- Step 9
The current basis is updated to
\[\begin{split}\mathcal{B} &= \{ 3, 2 \} \quad & \quad \mathcal{N} &= \{ 4, 5, 1 \}\\ B &= \begin{bmatrix} -1 & -1\\ 1 & -1 \end{bmatrix} \quad & \quad N &= \begin{bmatrix} 1 & 0 & -1\\ 0 & 1 & 2 \end{bmatrix}\\ x^*_\mathcal{B} &= \begin{bmatrix} \frac{3}{2}\\ \frac{1}{2} \end{bmatrix} \quad & \quad z^*_\mathcal{N} &= \begin{bmatrix} 3\\ 3\\ 1 \end{bmatrix}.\end{split}\]
Iteration 4¶
- Step 1
Since \(z^*_\mathcal{N}\) has all non-negative components, the current solution is optimal. The optimal objective function value is
\[\zeta^* = 2 x_1^* - 6 x_2^* = -3.\]
Exercise 6.6¶
Rewriting the LP in standard form according to [Bur] yields
where \(\mathbf{w} = \mathbf{x} - \mathbf{l}\). Note that the constant \(\mathbf{c}^\top \mathbf{l}\) in the objective function can and will be ignored in the following analysis.
The dual of \(\mathcal{P}\) is
Observe that the dual to \(\mathcal{D}\) is indeed \(\mathcal{P}\):
Exercise 6.7¶
Computing the gradient is not useful for this problem because the only constraints are \(x, y \geq 0\). The optimization can be carried out through reasoning in 1D without loss of generality.
(a)¶
Define
The primal LP is
(b)¶
Define
The dual LP is